×
26.08.2017
217.015.e1db

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония, размещают смесь порошков в замкнутой емкости с ограниченным доступом воздуха, устанавливают замкнутую емкость в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали замкнутую емкость, далее осуществляют термообработку полученной смеси на стадии образования двойной соли урана в воздушной атмосфере при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и термообработку двойной соли на стадии ее разложения до тетрафторида урана при температуре выше начала окисления углеграфитового материала, но ниже температуры плавления тетрафторида урана. Изобретение обеспечивает получение кондиционного тетрафторида урана с низким содержанием кислорода, высокой насыпной плотностью и выходом более 99%, а также упрощение процесса. 9 з.п. ф-лы, 2 табл.

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана.

Известен способ получения тетрафторида урана (патент GB №2222824, МПК C01G 43/06, опубл. 06.09.1989), по которому тетрафторид урана получают осаждением фтористо-водородной кислотой при 95°C из раствора урана в концентрированной соляной кислоте. Недостатком этого способа является использование избытка фтористо-водородной кислоты при 95°C, являющейся опасным и коррозионно-активным веществом.

Также известен способ (патент RU №2257351, МПК C01G 43/06, опубл. 27.02.2005), по которому осаждение тетрафторида урана проводят из хлоридного неводного раствора урана фторидом щелочного металла или бифторидом аммония. Недостатками этого способа являются использование агрессивных хлорсодержащих растворов и трибутилфосфата, а также необходимость проведения операций промывки, фильтрации и сушки тетрафторида урана и утилизации (переработки) промывных вод.

Известен «сухой» способ получения тетрафторида урана обработкой оксида урана газообразным фтористым водородом при 150-415°C (патент RU №2484020, МПК СO1G 43/06, опубл. 10.06.2013). Недостаток этого способа - использование герметичной агрегированной системы, включающей шнековые вращающиеся печи, холодильники - конденсаторы и прочее, а так же дорогостоящего, дефицитного газообразного фтористого водорода. Кроме того, тетрафторид, полученный таким способом, может содержать до 0,5% кислорода.

Наиболее близким по технической сущности к заявляемому техническому решению является способ получения тетрафторида урана (патент DE №949735, МПК C01G, опубл. 27.09.1956), по которому смесь диоксида урана и бифторида аммония нагревают до 150°. При этом вначале происходит образование двойных солей урана: пентафторураната (NH4UF5) и гексафторураната (NH4)2UF6). Полученные соли промывают дистиллированной водой и спиртом и сушат в вакууме при 110°C, а их разложение проводят в вакууме или в протоке инертного газа при 400-500°C. К недостаткам этого способа можно отнести многостадийность процесса (синтез двойной соли, промывка ее водой и спиртом, сушка и разложение соли до тетрафторида) и сложность аппаратурного оформления, поскольку этот способ предполагает использование герметичной агрегированной системы для проведения процесса разложения двойной соли в вакууме или инертной атмосфере. При этом содержание кислорода в тетрафториде, получаемом этим способом, составляет 0,5-0,6 мас. %, а его насыпная плотность не превышает 2,0 г/см3.

Задачей изобретения является упрощение процесса, снижение содержания кислорода в получаемом тетрафториде и повышение его насыпной плотности.

Техническое решение поставленной задачи достигается тем, что в способе получения тетрафторида урана, включающем смешивание диоксида урана с бифторидом аммония, термообработку полученной смеси на стадии образования двойной соли урана и термообработку двойной соли на стадии ее разложения до тетрафторида урана, согласно изобретению смесь порошков диоксида урана и бифторида аммония размещают в замкнутой емкости с ограниченным доступом воздуха, устанавливают замкнутую емкость в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали упомянутую замкнутую емкость, а термообработку емкостей проводят в воздушной атмосфере в две стадии: на первой стадии (на стадии образования двойной соли урана) при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и на второй стадии (на стадии разложения полученной соли до тетрафторида урана) при температуре выше начала окисления графита, но ниже температуры плавления тетрафторида урана.

В частных вариантах осуществления изобретения:

- В качестве первой замкнутой емкости с ограниченным доступом воздуха используют контейнер с крышкой.

- Толщина слоя засыпки может составлять 1,0 - 2,5 см.

- Термообработку емкостей на стадии разложения двойной соли урана до тетрафторида урана проводят при температуре 650-750°C.

- На первой и второй стадиях термообработки осуществляют выдержку в течение 1-2 часов и 1,0-1,5 часов соответственно.

- Бифторид аммония берут в количестве 1,0-1,2 от веса диоксида урана.

- Используют гранулы углеграфитового материала размером 0,6-2,5 мм.

- Используют углеграфитовый материал с открытой пористостью более 20%.

- В качестве углеграфитового материала используют синтетический графит или кокс.

Смесь порошков диоксида урана и бифторида аммония размещают в замкнутой емкости с ограниченным доступом воздуха, устанавливают в другую емкость с зазором, который заполняют засыпкой из углеграфитового материала в виде гранул таким образом, чтобы гранулы полностью укрывали первую емкость.

В замкнутой емкости со смесью диоксида урана и бифторида аммония, погруженном в засыпку в виде гранул из углеграфитового материала, благодаря продуктам реакции синтеза оксида углерода и разложения бифторида аммония защитная атмосфера образующихся газов (NH3, CO) препятствует прямому воздействию воздушной среды на реакционную смесь и тетрафторид урана. Это способствует существенному снижению кислорода в получаемом продукте с 0,5 (как в прототипе) до 0,04%.

Окислению тетрафторида урана препятствует оксид углерода, образующийся при окислении засыпки из углеграфитового материала в соответствии с протекающими реакциями:

При прокалке емкости со смесью диоксида урана с бифторидом аммония за счет создания замкнутого объема с ограниченным доступом воздуха (в частном варианте осуществления это может быть контейнер с крышкой) создается ограниченный доступ воздуха (кислорода) к гранулам углеграфитового материала. Поэтому в условиях дефицита кислорода протекает преимущественно реакция (2) с образованием оксида углерода, являющегося основным компонентом защитной атмосферы при температуре выше 400-500°C (начало окисления углеграфитового материала). При этом окисление гранул из углеграфитового материала происходит за счет воздуха, находящегося в порах гранул и самой засыпке.

Термообработку емкостей проводят в воздушной атмосфере в две стадии: на первой (на стадии образования двойной соли урана) при температуре выше точки плавления бифторида аммония, но ниже точки его кипения и на второй (на стадии разложения двойной соли урана до тетрафторида урана) при температуре выше начала окисления графита, но ниже температуры плавления тетрафторида урана.

На первой стадии внутри замкнутой емкости с ограниченным доступом воздуха протекает реакция образования двойной соли урана

Нижняя граница температурного диапазона термообработки на первой стадии обусловлена тем, что при температуре выше точки плавления бифторида аммония (~126°C) порошок диоксида урана смачивается жидким (расплавленным) бифторидом аммония, обеспечивая необходимый массобмен между реагентами. С другой стороны, при температуре выше точки кипения бифторида аммония (238°C) происходит процесс интенсивного испарения бифторида аммония и удаления его из зоны реакции, вследствие чего образование двойной соли происходит не полностью.

На второй стадии процесс разложения двойной соли урана до тетрафторида урана проходит по реакции

,

и происходит образование защитной атмосферы вследствие окисления гранул углеграфитового материала в виде оксида углерода по реакции (2).

Выбор температурного диапазона термообработки на второй стадии обусловлен, с одной стороны, тем, что при температуре выше начала окисления углеграфитового материала (~400-500°C) начинается реакция разложения двойной соли до тетрафторида урана и образование защитной атмосферы, а с другой стороны, при температуре выше температуры плавления тетрафторида урана (~1000°C) происходит его оплавление и спекание.

Температурный диапазон термообработки на второй стадии 650-750°C является оптимальным с точки зрения скорости протекания реакции (5) и получения тетрафторида урана с высокой насыпной плотностью (более 2,0 г/см3).

Экспериментально установлено, что при 650°C оптимальная толщина засыпки составляет порядка 1,0 см, а при увеличении температуры до 750°C - 2,5 см.

Кроме того, выдержка в течение 1-2 часов на первой стадии термообработки и в течение 1,0-1,5 часов на второй стадии термообработки обеспечивает соответственно полноту прохождения реакций образования двойной соли и разложения двойной соли до тетрафторида урана.

Бифторид аммония берут с «запасом», т.е. с учетом его расхода на образование двойной соли и испарения в процессе образования двойной соли, что может составлять 1,0 -1,2 от веса диоксида урана.

Пример осуществления способа

В соответствии с заявляемым способом порошок диоксида урана смешивали с порошком бифторида аммония в количестве 1,0-1,2 от веса диоксида урана и помещали в никелевый контейнер с закрытой крышкой. Этот контейнер размещали в другом контейнере из жаропрочной стали с зазором 1,0-2,5 см, который заполняли гранулами углеграфитового материала до верхнего уровня таким образом, чтобы он полностью закрывал крышку первого контейнера. Толщина слоя засыпки на крышке первого контейнера составляла 1,0-2,5 см. Систему емкостей с углеграфитовой засыпкой нагревали в воздушной атмосфере вначале до температуры 200-235°C, а затем нагревали до 650-750°C. В качестве углеграфитового материала в опытах №1,2,3 использовали гранулы графита ГМЗ с открытой пористостью 25%, а в опыте №4 - гранулы нефтяного кокса с открытой пористостью 35%.

Выдержку при температуре 200-235°C проводили в течение 1-2 ч до образования двойной соли фторида урана ((NH4)2UF6) по реакции (4):

При достижении температуры 650-750°С проводили выдержку в течение 1,0-1,5 ч до разложения двойной соли до тетрафторида урана. Масса ингредиентов и режимы термообработки первой - низкотемпературной (200-235°C) и второй - высокотемпературной (650-750°C) стадий приведены в таблице 1.

Контроль качества получаемого тертафторида урана проводили с помощью рентгенофазового и химического анализов, результаты которых приведены в таблице 2.

Из данных таблиц 1 и 2 и результатов химического и рентгенофазового анализов UF4 видно, что в опытах №1, 2, 3, 4 был получен UF4 хорошего качества с содержанием кислорода всего 0,04-0,049%.

Таким образом, предложенный способ позволяет сократить стадийность и продолжительность процесса, при этом получать кондиционный тетрафторид урана с насыпной плотностью 2,37-2,62 г/см3 и выходом более 99% по сравнению с другими, известными сухими методами. Кроме того, значительно упрощается аппаратурное оформление процесса получения тетрафторида урана.

Предложенный способ позволяет организовать процесс получения UF4 в стандартных прокалочных муфелях, в контейнерах, изготовленных из никеля или сплавов на его основе (монель, инконель) без применения инертных газов, вакуумирования и использования герметичной агрегированной системы.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 78.
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
Показаны записи 51-60 из 69.
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
+ добавить свой РИД