×
26.08.2017
217.015.e151

Результат интеллектуальной деятельности: СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области солнечной энергетики и может найти применение, например, при создании установок с фотоэлектрическими модулями. Система слежения за Солнцем концентраторной энергоустановки включает подсистему (1) азимутального вращения и подсистему (2) зенитального вращения. Подсистема (1) азимутального вращения выполнена в виде неподвижной стойки (3), по центру которой закреплен горизонтальный диск (4) с рифленой поверхностью (5), являющийся ведомой шестерней первого привода (6). На торец стойки (3) надета с возможностью вращения вертикальная труба (7). На верхнем конце вертикальной трубы (7) закреплена горизонтальная труба (9), на которой с возможностью вращения установлена подсистема (2) зенитального вращения. Подсистема (2) зенитального вращения выполнена в виде пространственной рамы (10) и двух вертикальных секторов (11) с рифлеными круговыми торцовыми поверхностями (12), являющимися ведомыми шестернями второго редуктора, вращаемого валом (13) второго привода (14). Пространственная рама (10) содержит по меньшей мере две (на чертеже показано четыре) опоры (15), имеющие -образный профиль, прикрепленные к поперечным балкам (16) пространственной рамы (10). Система более проста и менее трудоемка при монтаже и не требует использования при ее сборке специальных приспособлений. 1 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к области солнечной энергетики и может найти применение, например, при создании установок с фотоэлектрическими модулями.

Известна двухосевая система слежения для солнечной энергоустановки (см. патент CN 205102445, МПК F24J 02/07, F24J 02/16, F24J 02/54, опубликован 23.03.2016), включающая полое цилиндрическое основание, в полости которой установлена с возможностью вращения вокруг вертикальной оси стойка, снабженная механизмом азимутального вращения. К стойке шарнирно прикреплена пространственная рама для установки на ней солнечных элементов. Пространственная рама шарнирно прикреплена к плунжерному механизму зенитального вращения, в свою очередь, шарнирно закрепленному на горизонтальной консоли стойки.

Недостатком известной двухосевой системы слежения является размещение механизма азимутального вращения в полости цилиндрического основания и использование для зенитального вращения плунжерного механизма, что приводит к недостаточной механической жесткости системы.

Известна система слежения за Солнцем для платформы с солнечными элементами (см. заявка РСТ WO 2008046937, МПК F24J 02/38, F24J 02/54, G01S 03/786, H01L 31/042? опубликована 24.04.2008), включающая полое основание в виде усеченного конуса, выполненное из армированного бетона, на торце которого на упорном подшипнике размещены механизмы азимутального и зенитального вращения в виде червячных передач. Механизм зенитального вращения соединен с разрезной горизонтальной трубой, к которой прикреплены скобами поперечные балки, служащие основанием для платформы с солнечными элементами. Внутри полого основания размещены два электродвигателя с приводами механизмов азимутального и зенитального вращения.

Недостатками известной двухосевой системы слежения являются размещение механизмов азимутального и зенитального вращения на торце стойки и разрезной вариант изготовления горизонтальной трубы, что приводит к недостаточной прочности системы и снижает ее устойчивость к ветровым нагрузкам.

Известна двухосевая система слежения за Солнцем для солнечной электроустановки (см. заявка US 2010180883, МПК G01C 21/02, G06M 07/00, H01J 04/14, опубликована 22.07.2010), состоящая из вертикальной колонны, нижний фланец которой соединен с крестообразным основанием, концы которого жестко закреплены на четырех опорах, а на верхнем конце колонны установлен карданный шарнир, к которому прикреплена платформа, предназначенная для монтажа фотоэлектрических модулей. Платформа выполнена из облегченных поперечных и мощных продольных профилированных балок. Продольные и поперечные балки скреплены в общую конструкцию болтовыми соединениями. Карданный шарнир имеет две взаимно перпендикулярные оси, вокруг которых поворачивается платформа с модулями при сопровождении солнечного диска. Поворот платформы вокруг азимутальной и зенитальной осей обеспечивают два линейных актуаторных привода.

Недостатком известной системы слежения за Солнцем является использование карданных шарниров как для подвеса всей платформы с фотоэлектрическими модулями, так и в системе линейных актуаторных приводов. Карданные шарниры удовлетворительно работают лишь при относительно небольших углах наклонов между осями. При больших углах существенно увеличиваются динамические нагрузки на приводной электродвигатель, а также уменьшается точность позиционирования платформы.

Известна установка слежения за Солнцем для размещения и управления массивом модулей фотопреобразователей (см. патент US 8168931, МПК F24J 02/40, B66F 03/24, G01J 01/20, опубликован 01.05.2012). Установка слежения за Солнцем состоит из массивного основания-опоры, смонтированной на ней нижней вертикальной колонны, соосной с ней верхней колонны, имеющей возможность вращения на 360° относительно нижней колонны, и платформы для размещения массива модулей фотопреобразователей. Платформа представляет собой решетчатую прямоугольную конструкцию, состоящую из двух продольных усиленных балок и множества поперечных металлических профилей, расположенных в одной плоскости. Для обеспечения жесткости платформы продольные балки жестко скреплены двумя усиленными поперечинами, на которых смонтированы короткие полуоси для обеспечения поворота платформы на угол 90° вокруг зенитального направления. Для обеспечения возможности поворота платформы вокруг зенитальной оси, проходящей через короткие полуоси, применен линейный актуатор. Азимутальный привод установки для поворота платформы на 360° выполнен в виде цепной передачи крутящего момента от электродвигателя с малой шестеренкой, расположенного внутри нижней колонны на большую шестерню, закрепленной на оси верхней колонны.

Недостатком известной двухосевой конструкции системы слежения за солнцем является то, что ось зенитального вращения платформы имеет только две маленькие линии контакта с главной продольной балкой, что приводит к большим местным нагрузкам в этих полуосях и быстрому износу таких подшипников скольжения. Кроме того, такая конструкция не позволяет включить центральную продольную балку в общую схему жесткости платформы.

Известна система слежения за Солнцем концентраторной энергоустановки (см. патент RU 2488046, МПК F24J 2/54, F16M 11/12, опубликован 20.07.2013), совпадающая с настоящим изобретением по наибольшему числу существенных признаков и принятая за прототип. Известная система-прототип включает подсистему азимутального вращения и подсистему зенитального вращения. Подсистема азимутального вращения выполнена в виде неподвижной стойки, по центру которой закреплен горизонтальный диск с рифленой поверхностью, являющийся ведомой шестерней первого редуктора, вращаемого валом первого привода, на торец стойки надета с возможностью вращения вертикальная труба. На верхнем конце вертикальной трубы закреплена горизонтальная труба. Подсистема зенитального вращения с помощью кольцевых подшипников установлена на горизонтальной трубе с возможностью вращения. Подсистема зенитального вращения выполнена в виде пространственной рамы и прикрепленных к раме двух вертикальных секторов с рифлеными круговыми торцовыми поверхностями, являющимися ведомыми шестернями второго редуктора, вращаемого валом второго привода. На нижнем конце вертикальной трубы закреплен кронштейн, на котором установлены первый и второй приводы.

Достоинством системы-прототипа является наличие единого компактного блока для азимутальной и зенитальной осей вращения. Однако процесс установки подсистемы зенитального вращения на горизонтальную трубу с помощью кольцевых подшипников достаточно трудоемок, технологически сложен и требует применения специальных приспособлений.

Задачей настоящего изобретения являлась разработка такой системы слежения за Солнцем концентраторной энергоустановки, которая была бы более проста и менее трудоемка при ее монтаже и не требовала использования при ее сборке специальных приспособлений.

Поставленная задача решается тем, что система слежения за Солнцем концентраторной энергоустановки включает подсистему азимутального вращения и подсистему зенитального вращения. Подсистема азимутального вращения выполнена в виде неподвижной стойки, по центру которой закреплен горизонтальный диск с рифленой поверхностью, являющийся ведомой шестерней первого редуктора, вращаемого валом первого привода. На торец стойки надета с возможностью вращения вертикальная труба, на верхнем конце вертикальной трубы закреплена горизонтальная труба, на которой с возможностью вращения установлена подсистема зенитального вращения. Подсистема зенитального вращения выполнена в виде пространственной рамы и прикрепленных к раме двух вертикальных секторов с рифлеными круговыми торцовыми поверхностями, являющимися ведомыми шестернями второго редуктора, вращаемого валом второго привода. На нижнем конце трубы закреплен кронштейн, на котором установлены первый и второй приводы. Новым в системе является то, что пространственная рама содержит по меньшей мере две симметрично расположенные относительно оси неподвижной стойки опоры, имеющие -образный профиль, на противолежащих поверхностях которых установлены подпружиненные катки, контактирующие с поверхностью горизонтальной трубы, при этом вертикальные секторы прикреплены к свободным концам двух упомянутых опор.

Неподвижная стойка может быть снабжена по меньшей мере тремя регулируемыми по высоте винтовыми анкерными опорами для заглубления на необходимую глубину с возможностью последующего выравнивания в одной плоскости, расположенной параллельно земной поверхности.

Настоящее изобретение поясняется чертежами, где:

на фиг. 1 приведен общий вид в аксонометрии системы слежения за Солнцем концентраторной энергоустановки (со снятыми концентраторными солнечными модулями);

на фиг. 2 изображен в увеличенном масштабе в аксонометрии узел I, показанный на фиг. 1;

На фиг. 3 показан в продольном разрезе подпружиненный каток, изображенный на фиг. 2.

Система слежения за Солнцем концентраторной энергоустановки включает (см. фиг. 1) подсистему 1 азимутального вращения и подсистему 2 зенитального вращения. Подсистема 1 азимутального вращения выполнена в виде неподвижной стойки 3, по центру которой закреплен горизонтальный диск 4 с рифленой поверхностью 5, являющийся ведомой шестерней первого привода 6.. Горизонтальный диск 4 может быть выполнен как в виде единого плоского диска, с отверстиями для снижения веса, так и в виде отдельных секторов, соединенных в единое целое с помощью стальных пластин. Рифленая поверхность 5 может быть выполнена из роликовой однорядной цепи в климатическом исполнении. На торец стойки 3 надета с возможностью вращения вертикальная труба 7, для чего на верхнюю часть стойки 3 напрессована внутренняя обойма конического упорного подшипника. На верхнем конце вертикальной трубы 7 с помощью, например, отрезка -образного швеллера 8 закреплена хомутами горизонтальная труба 9, на которой с возможностью вращения установлена подсистема 2 зенитального вращения. Подсистема 2 зенитального вращения выполнена в виде пространственной рамы 10 и двух вертикальных секторов 11 с рифлеными круговыми торцовыми поверхностями 12, являющимися ведомыми шестернями второго редуктора (на чертеже не показан), вращаемого валом 13 с шестернями 14 второго привода 15. Пространственная рама 10 содержит по меньшей мере две (на чертеже показано четыре) опоры 16, имеющие -образный профиль, прикрепленные к поперечным балкам 17 пространственно рамы 10. Опоры 16 выполнены, например, из металлических уголков, одни концы которых приварены под углом друг к другу. Опоры 16 симметрично расположены относительно оси неподвижной стойки 3. Вертикальные секторы 11 прикреплены к свободным концам двух опор 16, расположенных с двух сторон от вертикальной трубы 7. На противолежащих поверхностях опор 16 (см. фиг. 2, фиг. 3) установлены подпружиненные катки 18, контактирующие с поверхностью горизонтальной трубы 9. Каждый подпружиненный каток 18 выполнен, например, (см. фиг. 3) из пары подшипников 19, посаженных на общую ось 20, прикрепленную к вертикальному плунжеру 21, поджимаемому пружиной 22. Плунжер 21 и пружина 22 размещены в корпусе 23, торец которого закрыт пробкой 24, устанавливаемой в корпусе 23 посредством резьбового соединения (на чертеже не показана). Подпружиненные катки 18 прикрепляются к опорам 16 посредством планок 25, например, с помощью болтов 26 (см. фиг. 2, фиг. 3). Такая конструкция опор 16 и катков 18 позволяет снизить требования к характеристикам горизонтальной трубы 9. Необходимое количество однотипных поперечных балок 17 определяется общим весом пространственной рамы 10 с фотоэлектрическими модулями. Поперечные балки 17 скрепляют в единую пространственной рамы 10 с помощью продольных балок 27, количество и длину которых выбирают, исходя из размеров и количества монтируемых концентраторных модулей. Неподвижная стойка 3 может быть снабжена по меньшей мере тремя регулируемыми по высоте винтовыми анкерными опорами 28 (на фиг. 1 показаны шесть винтовых анкерных опор 28). Электромеханическая система приводов 6 и 15 состоит из двух однотипных конструкций, представляющих собой электродвигатель постоянного тока, выходной вал которого соединен с входным валом червячного редуктора. Первый привод 6 и второй привод 15 установлены на кронштейне 29, прикрепленном к нижнему концу трубы 3. Система слежения за Солнцем концентраторной энергоустановки включает оптический солнечный датчик 30, в качестве которого может быть использован любой стандартный матричный оптический сенсор с разрешением 640×480 пикселей и объективом 1/6 дюйма, что обеспечивает угол обзора около 25°. Управление движением пространственной рамы 10 вокруг азимутальной и зенитальной осей с необходимой точностью осуществляют при помощи центрального блока управления 31, который обычно состоит из стандартного микроконтроллера с блоком памяти и двух силовых драйверов управления первым и вторым электродвигателями 32, 33 постоянного тока соответственно приводов 6 и 15.

Настоящая конструкция системы слежения за Солнцем концентраторной энергоустановки позволяет упростить и ускорить процесс сборки установки прямо на местности без использования специальных приспособлений. Для этого устанавливают в заданной точке местности подсистему 1 азимутального вращения, заглубляя на требуемую глубину винтовые анкерные сваи 28. Из продольных балок 27, поперечных балок 17 и опор 16 собирают пространственную раму 10, на которую устанавливают оптический солнечный датчик 30. Пространственную раму 10 опорами 18 устанавливают на горизонтальную трубу 9, затем эту сборку поднимают краном и опускают на посадочное место на швеллер 8 и притягивают горизонтальную трубу 9 швеллеру 8 хомутами. Такая сборка системы обеспечивает возможность совместить центр тяжести пространственной рамы 10 с концентраторными модулями с зенитальной осью вращения системы. В этом случае поперечная составляющая момента силы, действующая на неподвижную стойку 3, практически сводится к нулю, что особенно важно при положении концентраторных модулей в направлении на восход или заход Солнца.


СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ
СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ
СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ
СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ
СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ
СИСТЕМА СЛЕЖЕНИЯ ЗА СОЛНЦЕМ КОНЦЕНТРАТОРНОЙ ЭНЕРГОУСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 119.
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64d4

Лазер-тиристор

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4),...
Тип: Изобретение
Номер охранного документа: 0002557359
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.7371

Композиционный материал, поглощающий излучение в ближней ик области спектра

Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от...
Тип: Изобретение
Номер охранного документа: 0002561123
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.11.2015
№216.013.92aa

Тонкопленочный солнечный элемент

Тонкопленочный солнечный элемент содержит светопрозрачную подложку (1), на которую последовательно нанесены светопрозрачная электропроводящая пленка (2), p-слой (3) из микрокристаллического гидрогенизированного кремния в виде твердого раствора SiC:H, где 0,7<х<0,95, с оптической шириной...
Тип: Изобретение
Номер охранного документа: 0002569164
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97c3

Способ определения ориентации nv дефектов в кристалле

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации...
Тип: Изобретение
Номер охранного документа: 0002570471
Дата охранного документа: 10.12.2015
Показаны записи 21-30 из 105.
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64d4

Лазер-тиристор

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4),...
Тип: Изобретение
Номер охранного документа: 0002557359
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.7371

Композиционный материал, поглощающий излучение в ближней ик области спектра

Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от...
Тип: Изобретение
Номер охранного документа: 0002561123
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.11.2015
№216.013.92aa

Тонкопленочный солнечный элемент

Тонкопленочный солнечный элемент содержит светопрозрачную подложку (1), на которую последовательно нанесены светопрозрачная электропроводящая пленка (2), p-слой (3) из микрокристаллического гидрогенизированного кремния в виде твердого раствора SiC:H, где 0,7<х<0,95, с оптической шириной...
Тип: Изобретение
Номер охранного документа: 0002569164
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97c3

Способ определения ориентации nv дефектов в кристалле

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации...
Тип: Изобретение
Номер охранного документа: 0002570471
Дата охранного документа: 10.12.2015
27.02.2016
№216.014.c07e

Способ получения кристаллических алмазных частиц

Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас. % до 58 мас. %, выдержку...
Тип: Изобретение
Номер охранного документа: 0002576055
Дата охранного документа: 27.02.2016
+ добавить свой РИД