×
26.08.2017
217.015.e148

Результат интеллектуальной деятельности: Способ получения многослойного композитного покрытия

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие. Нижний слой покрытия наносят толщиной 100-150 мкм из механически активированного порошка Ni, средний слой - толщиной 500-900 мкм из механически активированного порошка с эффектом памяти формы на основе TiNiZr, а верхний слой толщиной 150-600 мкм из механически активированной смеси порошков из BN, ВС, Со, Ni, С при их соотношении, вес. %: BN 65-70, ВС 10-15, Со 8-10, Ni 4-7, С 1-3. Затем проводят отжиг при температуре 850-1000°С в течение 1,5-2 часа. После нанесения среднего слоя осуществляют его поверхностное пластическое деформирование при нагревании в интервале температур мартенситного превращения на величину до 2-5% от толщины слоя. Механическую активацию порошков и высокоскоростное газопламенное напыление производят в защитной атмосфере. Техническим результатом является повышение прочностных характеристик и износостойкости композитных покрытий с использованием материалов с эффектом памяти формы. 3 з.п. ф-лы, 1 пр., 1 табл.

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.

Так, например, известен способ получения композиционных покрытий из порошковых материалов, включающий подготовку обрабатываемой поверхности посредством очистки, промывки и струйно-абразивной обработки, с последующей лазерной наплавкой порошкового материала в среде инертного газа, в качестве порошкового материала используют смесь из частиц титана и карбида кремния с размером 20-100 мкм в массовом соотношении 6:4 или 6:5, а процесс наплавки осуществляют при мощности лазера 4÷5 кВт, скорости сканирования лазерного луча 500÷700 мм/мин и расходе порошка 9,6÷11,9 г/мин (патент РФ №2542199, опубл. 20.02.2015 г.).

Недостатком данного способа является технологическая сложность процесса, требующего нагрева материала, хрупкость покрытий и изменение структурного состояния основы в результате нагрева.

Известен способ нанесения наноструктурированных износостойких электропроводящих покрытий из разнородных материалов, включающий подачу порошка в сверхзвуковой поток подогретого рабочего газа (например, воздуха) и нанесение его на металлическую поверхность изделия, для исключения межфазных границ, а также обеспечения изменения химического состава наносимого материала покрытия по линейной или логарифмической зависимости подачу порошков производят одновременно из двух или более автономно работающих дозаторов, причем плотность массового расхода порошка из первого дозатора увеличивают от 0,01 до 2 г/см⋅см2, а плотность массового расхода порошка из второго дозатора соответственно уменьшают также по линейной или логарифмической зависимости от 2 до 0,01 г/см⋅см2, обеспечивая тем самым изменение химического состава по толщине наносимого покрытия (патент РФ №2362839, опубл. 27.07.2009 г.).

Недостатком данного способа являются низкие прочностные характеристики покрытия, такие как адгезия, предел усталости.

Известен способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, наносят нижний слой из нитрида циркония и верхний - из соединения нитрида титана, хрома и ниобия при их соотношении, мас. %: титан 79,0-85,0, хром 9,0-11,0, ниобий 6,0-10,0, нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют составным из титана и хрома, второй - из циркония и располагают противоположно первому, а третий изготавливают составным из титана и ниобия и располагают между ними, причем нижний слой наносят с использованием второго катода, а верхний слой - с использованием первого и третьего катодов (патент РФ №2548864).

Недостатком данного способа являются низкая скорость нанесения покрытий, низкие прочностные характеристики покрытия.

В качестве наиболее близкого аналога заявляемого изобретения выбран способ высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие (патент РФ №25138533, опубл. 20.04.2014 г.).

Задачей предложенного изобретения является получение многослойных композитных покрытий из порошковых материалов, содержащих связующий слой - слой из материала с эффектом памяти формы - упрочняющий слой.

Техническим результатом является повышение прочностных характеристик и износостойкости композитных покрытий с использованием материалов с эффектом памяти формы.

Технический результат достигается предложенным способом высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие, в котором нижний слой покрытия наносят толщиной 100-150 мкм из механически активированного порошка Ni, средний слой - толщиной 500-900 мкм из механически активированного порошка с эффектом памяти формы на основе TiNiZr, а верхний слой толщиной 150-600 мкм из механически активированной смеси порошков из BN, В4С, Со, Ni, С при их соотношении, вес. %: BN 65-70, В4С 10-15, Со 8-10, Ni 4-7, С 1-3, затем проводят отжиг при температуре 850-1000°С в течение 1,5-2 часа, при этом после нанесения среднего слоя из сплава с эффектом памяти формы на основе TiNiZr осуществляют его поверхностное пластическое деформирование при нагревании в интервале температур мартенситного превращения на величину до 2-5% от толщины слоя, а механическую активацию порошков и высокоскоростное газопламенное напыление производят в защитной атмосфере. Механическую активацию порошков и высокоскоростное газопламенное напыление проводят в среде аргона. Механическую активацию порошков осуществляют в шаровой мельнице с использованием мелющих тел в виде шаров, состоящих из WC-CrC-Ni. В механически активированной смеси порошков используют углерод (С) в виде углеродных нанотрубок.

В процессе высокоскоростного газопламенного напыления механически активированных порошков происходит выделение энергии, накопленной в процессе механической активации, что обеспечивает более надежную адгезию с основой и между слоями и повышенные прочностные свойства многослойного композитного покрытия, а высокая скорость напыления обеспечивает формирование наноразмерной структуры. Принятая последовательность нанесения слоев «адгезионный слой - функциональный слой из материала с эффектом памяти формы - функциональный упрочняющий износостойкий слой» обеспечивает повышение прочностных характеристик и износостойкости композита. Наличие промежуточного слоя из материала с эффектом памяти формы, помимо характерных для этих материалов свойств памяти, сверхупругости или сверхэластичности (в зависимости от термообработки), тормозит, а иногда блокирует распространение дефектов типа трещин, возникающих в прочном, но хрупком поверхностном слое, и, как следствие, способствует повышению прочности и долговечности. Отжиг проводится для снятия внутренних напряжений после формирования многослойного композитного покрытия. Предложенный способ обеспечивает получение многослойного наноструктурированного композитного покрытия с эффектом памяти формы на стальных образцах с размером зерен 15-120 нм.

На первом этапе проводится механическая активация порошка Ni, порошка на основе TiNiZr, смеси порошков при следующем содержании компонентов, вес. %: 65-70 кубического нитрида бора, 10-15 карбида бора, 8-10 кобальта, 4-7 никеля, 1-3 углеродных нанотрубок, подвергают перемешиванию и измельчению в шаровой мельнице с использованием мелющих тел (в виде шаров), содержащих WC-CrC-Ni. Механическая активация порошков осуществляется в шаровой мельнице АГО-2У. Загрузка и обработка порошков производится в инертной атмосфере (среда аргона) со следующими параметрами: частота вращения барабана 1200-1500 мин-1, частота вращения водила 900-1000 мин-1, диаметр шаров 6 мм, время работы 15-30 мин.

На втором этапе проводится высокоскоростное газопламенное напыление в защитной атмосфере (среда аргона) механически активированных порошков. В камере при помощи вакуумного насоса создается вакуум, далее этот вакуум заполняется аргоном. Механически активированные порошки Ni, TiNiZr, BN-B4C-Co-Ni-C засыпают в порошковые дозаторы, связанные шлангами подачи порошков к соплу газопламенной горелки. Сопло газопламенной горелки имеет три канала для ввода порошков. Первый канал сопла, связанный с порошковым дозатором для подачи в зону напыления механически активированного порошка Ni, второй канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного порошка с эффектом памяти формы на основе TiNiZr, третий канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного порошка BN-B4C-Co-Ni-C. Раздельная подача механически активированных порошков в зону напыления возможна за счет конструкции сопла газопламенной горелки.

Многослойное композитное покрытие получаем следующим образом: сначала на стальной образец производят напыление нижнего слоя на основе механически активированного порошка Ni, имеющего неограниченную растворимость с железом толщиной 100-150 мкм на деталь (изделие), для увеличения адгезии с основой и с последующим слоем; на нижний слой на основе Ni наносят средний слой механически активированного порошка с эффектом памяти формы на основе TiNiZr толщиной 500-900 мкм, после нанесения среднего слоя осуществляют его поверхностное пластическое деформирование на величину до 2-5% от толщины среднего слоя с помощью пресса, состоящего из верхней и нижней траверс; далее осуществляется нанесение верхнего слоя механически активированного порошка BN-B4C-Co-Ni-C толщиной 150-600 мкм. Контроль температуры процесса осуществляют пирометром. Вакуумная камера со смотровым окном расположена на раме. В процессе поверхностного пластического деформирования осуществляют нагрев среднего слоя при помощи трансформатора, соединенного с нижней траверсой пресса. Весь процесс получения композита осуществляется автоматически при помощи блока управления, к которому при помощи шлангов подсоединены баллоны с газами. Нагрев образца с композитным покрытием для отжига осуществляют с помощью трансформатора.

После получения композита проводят отжиг при температуре 850-1000°С в течение 1,5-2 часа.

Пример

На первом этапе проводится механическая активация порошка Ni, порошка на основе TiNiZr, смеси порошков при следующем содержании компонентов: 65 вес. % кубический нитрид бора, 15 вес. % карбида бора, 10 вес. % кобальта, 7 вес. % никеля, 3 вес. % углеродных нанотрубок, подвергают перемешиванию и измельчению в шаровой мельнице с использованием мелющих тел (в виде шаров), содержащих WC-CrC-Ni. Механическая активация порошков осуществляется в шаровой мельнице АГО-2У. Загрузка и обработка порошков производится в инертной атмосфере (среда аргона), со следующими параметрами: частота вращения барабана 1200 мин-1, частота вращения водила 1000 мин-1, диаметр шаров 6 мм, время работы 20 мин. На втором этапе проводится высокоскоростное газопламенное напыление в защитной атмосфере (среда аргона) механически активированных порошков. В камере при помощи вакуумного насоса создается вакуум, далее этот вакуум заполняется аргоном. Механически активированные порошки Ni, TiNiZr, BN-B4C-Co-Ni-C засыпают в порошковые дозаторы, связанные шлангами подачи порошков к соплу газопламенной горелки. Сопло газопламенной горелки имеет три канала для ввода порошков. Первый канал сопла, связанный с порошковым дозатором для подачи в зону напыления механически активированного порошка Ni, второй канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного порошка с эффектом памяти формы на основе TiNiZr, третий канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного порошка BN-B4C-Co-Ni-C. Раздельная подача механически активированных порошков в зону напыления возможна за счет конструкции сопла газопламенной горелки. Многослойное композитное покрытие получаем следующим образом: сначала происходит напыление нижнего слоя на основе механически активированного порошка Ni толщиной 100 мкм на деталь (изделие) для увеличения адгезии последующих слоев; на нижний слой на основе Ni наносят средний слой механически активированного порошка с эффектом памяти формы на основе TiNiZr толщиной 600 мкм, после нанесения среднего слоя осуществляют его поверхностное пластическое деформирование на величину 2% от толщины среднего слоя с помощью пресса, состоящего из верхней и нижней траверс; далее осуществляют нанесение верхнего слоя механически активированного порошка BN-B4C-Co-Ni-C толщиной 450 мкм. Контроль температуры процесса осуществляют пирометром. Вакуумная камера со смотровым окном расположена на раме. В процессе поверхностного пластического деформирования осуществляют нагрев среднего слоя при помощи трансформатора, соединенного с нижней траверсой пресса. Весь процесс получения композита осуществляется автоматически при помощи блока управления, к которому при помощи шлангов подсоединены баллоны с газами. Нагрев образца с композитным покрытием для отжига осуществляют с помощью трансформатора. После получения композита проводят отжиг при температуре 900°С в течение 1,7 часа.

К преимуществам изобретения следует отнести технологическую простоту обработки, отсутствие требования дополнительного нагрева материала в процессе обработки, малую продолжительность цикла обработки, формирование в материале наноструктурного состояния, увеличение реакционной способности компонентов композита в связи с увеличением площади межфазных границ, реализацию деформационного и дисперсного упрочнения материала.

Результаты испытаний сведены в таблицу 1.

Как видно из таблицы 1, полученное многослойное композитное наноструктурированное покрытие с использованием материала с эффектом памяти формы обладает повышенными механическими свойствами и износостойкостью.

Источник поступления информации: Роспатент

Показаны записи 411-420 из 482.
21.03.2020
№220.018.0ea3

Способ обработки прискважинной зоны продуктивного пласта

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению продуктивности скважин и интенсификации добычи нефти. Изобретение содержит способ обработки прискважинной зоны пласта. В скважину спускают установленные последовательно снизу...
Тип: Изобретение
Номер охранного документа: 0002717163
Дата охранного документа: 18.03.2020
21.03.2020
№220.018.0eac

Способ промывки забоя скважины

Изобретение относится к нефтяной промышленности и может применяться при промывке и очистке буровых скважин. Способ включает спуск на забой скважины колонны насосно-компрессорных труб с косым срезом, оснащенным коническим посадочным седлом для сменных насадков на 2-2,5 метра выше текущего забоя,...
Тип: Изобретение
Номер охранного документа: 0002717167
Дата охранного документа: 18.03.2020
12.04.2020
№220.018.1441

Способ получения износостойкого покрытия режущего инструмента

Изобретение относится к области машиностроения, а именно к способам нанесения наноструктурированных и износостойких покрытий методом ионно-плазменного напыления на поверхность режущих инструментов. Способ получения износостойкого покрытия режущего инструмента включает нанесение на поверхность...
Тип: Изобретение
Номер охранного документа: 0002718642
Дата охранного документа: 10.04.2020
17.04.2020
№220.018.1539

Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали

Изобретение относится к установке для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы. Техническим результатом изобретения является увеличение срока эксплуатации установки. Установка содержит вакуумную камеру с вакуумным...
Тип: Изобретение
Номер охранного документа: 0002718785
Дата охранного документа: 14.04.2020
25.04.2020
№220.018.1928

Установка для получения кремниевой питьевой воды

Изобретение относится к установкам получения питьевой воды, содержащей в своем составе биологически активный компонент, и может быть использовано для изготовления кремниевой питьевой воды. Установка для получения кремниевой питьевой воды содержит емкость, состоящую из цилиндрического корпуса с...
Тип: Изобретение
Номер охранного документа: 0002719958
Дата охранного документа: 23.04.2020
17.06.2020
№220.018.274f

Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к ремонтно-изоляционным работам в нефтяных и газовых скважинах, проводимым для ликвидации заколонных перетоков флюидов, ограничения водопритоков, изоляции водоносных горизонтов и повышения эффективности работы скважин....
Тип: Изобретение
Номер охранного документа: 0002723416
Дата охранного документа: 11.06.2020
18.06.2020
№220.018.2782

Привод конвейера дискретного действия

Изобретение относится к приводам конвейеров. Привод конвейера дискретного действия содержит двигатель, преобразователь непрерывного вращательного движения в дискретное, ведущий и ведомый шкивы, конвейерную ленту, при этом преобразователь движения включает в себя корпус, в котором соосно...
Тип: Изобретение
Номер охранного документа: 0002723618
Дата охранного документа: 16.06.2020
21.06.2020
№220.018.289d

Зубчатый механизм с прерывистым движением выходного звена

Изобретение относится к области машиностроения. Зубчатый механизм с прерывистым движением выходного звена содержит корпус, в котором соосно установлены входной и выходной валы, центральное неподвижное зубчатое колесо, жестко закрепленное на корпусе соосно входному валу, сателлит, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002724005
Дата охранного документа: 18.06.2020
21.06.2020
№220.018.2903

Способ переработки биомассы

Изобретение относится к области переработки биомассы с получением синтез-газа и золы - биочара. Способ осуществляют путем измельчения исходной биомассы до размера частиц 100-200 мкм, смешивания с водной эмульсией тяжелого углеводородного сырья с содержанием воды 18,0-25,0 мас.%, имеющей размер...
Тип: Изобретение
Номер охранного документа: 0002723864
Дата охранного документа: 17.06.2020
21.06.2020
№220.018.295d

Установка для очистки сточных вод от нефтепродуктов

Изобретение относится к области охраны окружающей среды, в частности к очистке поверхностных сточных вод предприятий, специализирующихся на утилизации нефтешламов и нефтесодержащих отходов. Установка для очистки сточных вод от нефтепродуктов содержит горизонтально расположенный имеющий в...
Тип: Изобретение
Номер охранного документа: 0002723862
Дата охранного документа: 17.06.2020
Показаны записи 231-232 из 232.
15.05.2023
№223.018.58f1

Способ получения многослойных высокоэнтропийных композитных покрытий

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002760316
Дата охранного документа: 23.11.2021
15.05.2023
№223.018.58f2

Способ получения многослойных высокоэнтропийных композитных покрытий

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002760316
Дата охранного документа: 23.11.2021
+ добавить свой РИД