×
26.08.2017
217.015.e130

Результат интеллектуальной деятельности: Способ очистки алюминийсодержащих хлоридных растворов

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Способ очистки алюминийсодержащих хлоридных растворов от железа включает по крайней мере один этап электрохимической очистки алюминийсодержащих хлоридных растворов. Электрохимическую очистку проводят при рН 1,0-3,0, катодной плотности тока 0,001-0,150 А/см и анодной плотности тока 0,015-0,200 А/см. При этом температура процесса составляет 20-97°С. Изобретение позволяет повысить степень очистки алюминийсодержащих хлоридных растворов от железа, повысить эффективность процесса и снизить расход электроэнергии. 3 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области цветной металлургии, в частности к электрохимической очистке алюминийсодержащего хлоридного раствора от железа.

Известен способ очистки алюминийсодержащего раствора, полученного после выщелачивания глиноземистой руды, содержащей примеси железа [SU 272182, опубл. 26.05.1970 г.]. Согласно данному способу выщелачивание проводят в автоклаве азотной кислотой, взятой в количестве от 50 до 90% от стехиометрически необходимого, при температуре 140-220°С, давлении 5,6-10,5 кг/см2, а также продолжительности 1-6 часов. Полученную реакционную массу из автоклава подвергают разбавлению, фильтрации, промывки нерастворенного осадка, который подлежит выбросу, при этом полученные фильтраты используют для получения глинозема.

Недостатками данного способа являются:

- сложность исполнения аппаратурно-технологической схемы процесса, поскольку выщелачивание проводится в агрессивной среде и при высокой температуре;

- образование нерастворимых кремнеземных осадков, требующих дальнейшей переработки.

Известен способ очистки алюминийсодержащего раствора азотной кислотой, осуществляемый путем добавления к раствору двухосновного нитрата алюминия с целью нейтрализации избытка кислоты и выделения гидроксида железа в виде осадка, который подвергается дальнейшей фильтрации [RU 2202516, опубл. 20.04.2003 г.].

Недостатками данного способа являются:

- необходимость приготовления суспензии двухосновного нитрата алюминия Al(OH)2NO3, а также ее дробного добавления в раствор азотнокислых солей, что в свою очередь не позволяет проводить процесс осаждения железа в динамическом режиме;

- повышенный расход кислоты для нейтрализации и выделения гидроксида железа.

Наиболее близким к заявленному способу является способ очистки алюминийсодержащих хлоридных растворов алюминия от примесей железа [SU 40967, опубл. 31.01.1935 г.]. Прокаленные при температуре 500-700°С каолиновые глины, содержащие в качестве основной примеси соединения железа, обрабатывают соляной кислотой. В кислый раствор добавляют металлический алюминий. Поскольку алюминий имеет большее химическое сродство к хлору, по сравнению с железом, то последнее вытесняется алюминием из раствора. Для предотвращения совместного выделения в осадок железа и гексагидрата хлорида алюминия в реактор опускают два электрода и включают постоянный ток. При этом возникающее электромагнитное поле ориентирует движение металлических частиц железа в сторону катода. Аппарат имеет вид длинного желоба, в который с одного конца непрерывно подают загрязненный раствор, а с другого - выводят очищенный от примеси железа. Основными недостатками данного способа являются:

- низкая степень очистки алюминийсодержащего раствора от железа, за счет одностадийности процесса;

- недостаточная эффективность процесса (низкий выход по току), за счет отсутствия регламентированных показателей кислотности процесса;

- высокий расход электроэнергии, что связано с возможностью пассивации электродов, а также с малой электропроводностью раствора при низких температурах.

Техническим результатом предлагаемого изобретения является повышение степени очистки алюминийсодержащего раствора от железа с одновременным повышением эффективности процесса, а также снижение расхода электроэнергии.

Указанный технический результат достигается тем, что способ очистки алюминийсодержащих хлоридных растворов от железа проводят по крайней мере в один этап электрохимической очистки алюминийсодержащих хлоридных растворов при рН 1,0-3,0, катодной плотности тока 0,001-0,150 А/см2 и анодной плотности тока 0,015-0,200 А/см2, при этом температура процесса составляет 20-97°С.

При этом пропускание тока через алюминийсодержащие хлоридные растворы осуществляется с помощью стального катода и алюминиевого анода.

Помимо этого, проведение электрохимической очистки алюминийсодержащих хлоридных растворов возможно в пять этапов со ступенчатым уменьшением катодной плотности тока с 0,150 до 0,001 А/см2 при разнице в плотностях тока 0,002-0,07 А/см2 от этапа к этапу.

Также проведение электрохимической очистки алюминийсодержащих хлоридных растворов возможно по крайней мере в два этапа с предварительным нагреванием алюминийсодержащего хлоридного раствора до 90-97°С и последующем поддержании температуры процесса от этапа к этапу.

Кислотность хлоридного раствора, содержащего алюминий, железо, хром и другие примеси, поддерживают в интервале рН 1,0-3,0. При этом значительное увеличение концентрации соляной кислоты в растворе со снижением pH менее 1,0 приводит к резкому снижению выхода по току. С другой стороны, снижение концентрации кислоты с увеличением pH более 3,0, также недопустимо из-за начала гидролиза с выделением в осадок оксихлорида алюминия. Поэтому pH алюминийсодержащих хлоридных растворов поддерживают в пределах 1,0-3,0.

Алюминийсодержащий хлоридный раствор подвергают электролизу при катодной плотности тока 0,001-0,150 А/см2 и температуре процесса 20-97°С. Неизбежным при ведении процесса электролиза является одновременное выделение на катоде железа и водорода. При этом значительное влияние на совместное выделение железа и водорода на катоде оказывает температура. При низких температурах, менее 20°С, скорость разряда ионов железа превышает скорость разряда ионов водорода только при низких плотностях тока, менее 0,001 А/см2. Таким образом, для обеспечения приемлемого выхода по току при плотностях тока 0,001-0,150 А/см2 температуру электролита необходимо поддерживать в пределах 20-97°С. Такой интервал температур обусловлен тем, что при температуре ниже 20°С электропроводность раствора будет низкой, а следовательно, будет увеличиваться расход электроэнергии, а при температуре более 97°С будет происходить выпаривание раствора, что в свою очередь сильно затруднит ведение процесса.

Наибольшая эффективность процесса достигается при температурах 90-97°С, поскольку при данных температурах достигается наибольший выход по току, что определяет количество выделяемого железа из алюминийсодержащего раствора. Температура алюминийсодержащего раствора зависит от температуры выщелачивания алюминийсодержащего сырья соляной кислотой. Как правило, в кислотных способах получения глинозема, температура передела выщелачивания составляет более 150°С. При моментальной подаче алюминийсодержащего хлоридного раствора на электрохимическую очистку, температура процесса будет соответствовать интервалу 90-97°С, соответственно при длительном хранении температура алюминийсодержащего хлоридного раствора может снижаться до 20°С. Для достижения максимальной эффективности процесса, температуру раствора необходимо поддерживать от этапа к этапу, в случае, если электрохимическая очистка проводится в несколько этапов. Проведение электрохимической очистки в один этап лучше всего осуществлять сразу после передела выщелачивания алюминийсодержащего сырья соляной кислотой, однако в зависимости от объема раствора и продолжительности процесса электрохимической очистки, температура раствора может снижаться до 20°С.

В качестве материала катода используют сталь, а для анода - алюминий. Перенапряжение водорода на железе является высоким и достигает - 0,8 В, что выше стандартного электродного потенциала железа, который составляет - 0,44 В. Это приводит к выделению на катоде железа совместно с водородом. Причем предельный ток выделения железа зависит от концентрации металла в растворе, а ток, расходуемый на выделение водорода, регулируется и влияет на выход по току. Процесс выделения железа возможен даже при очень низком содержании ионов железа в соляном растворе.

В ходе процесса электрохимической очистки раствора используется расходуемый алюминиевый анод. Преимущество растворяющегося алюминиевого анода заключается в том, что в процессе электролиза не происходит загрязнение конечного продукта нежелательными элементами.

Процесс электрохимического выделения железа из хлоридного раствора проводят при анодной плотности тока 0,015-0,200 А/см2. Снижение анодной плотности тока ниже 0,015 А/см2 приводит к частичной пассивации поверхности анода хлоридом алюминия с адсорбированными на нем продуктами катодного восстановления и, как следствие, к росту поляризации. Во время электрохимической очистки реальная анодная плотность тока будет расти за счет уменьшения площади поверхности анода и при достижении 0,2 А/см2 на аноде начнет выделяться кислород. При этом напряжение на ванне и расход электроэнергии увеличиваются.

Постоянный ток, проходящий при электрохимической очистки через хлоридный раствор, уменьшается. При этом катодная плотность тока падает ступенчато с 0,150 до 0,001 А/см2 за пять этапов. Предельный ток восстановления железа, показывающий при какой плотности тока необходимо вести процесс электролиза для достижения максимально возможного выхода по току, зависит от концентрации ионов железа в алюминийсодержащих хлоридных растворах. При этом в процессе очистки хлоридного раствора концентрация железа в нем постоянно уменьшается, что приводит к уменьшению значения предельного тока и, как следствие, к снижению выхода по току. Для поддержания оптимальных параметров процесса очистки необходимо снижать плотность тока с 0,150 до 0,001 А/см2 за пять этапов. Уменьшение количества этапов снижения установочной катодной плотности тока менее пяти экономически не целесообразно, за счет уменьшения доли тока расходуемого на восстановление железа, а увеличение более пяти - из-за роста затрат на установку дополнительных электрохимических ячеек.

Каждый этап электрохимической очистки осуществляется в отдельной, независимой, расположенной последовательно по ходу движения раствора электрохимической ячейке, с разницей в плотностях тока 0,002-0,07 А/см2. Каскадная схема расположения электрохимических ячеек позволяет точно регулировать подачу тока на электролизеры по экспоненциальному закону, например при помощи ряда Тейлора. В результате такого подхода продолжительность эксплуатации всех ячеек будет одинаковой, а потери тока, идущего на выделения железа, и электроэнергии минимальны. Величина плотности тока в различных ячейках может отличаться между собой, но не менее, чем на 0,002 А/см2. Уменьшение плотности тока ниже 0,002 А/см2 приведет к увеличению числа электрохимических ячеек и как следствие к дополнительным затратам. При этом необходимо учитывать, что значительное увеличение плотности тока, более 0,07 А/см2, приведет к потерям тока. Выход по току электрохимической очистки алюминийсодержащих хлоридных растворов, при интервале катодной плотности тока 0,001-0,150 А/см2, составляет от 75 до 97% при удельном расходе электроэнергии 800-1500 кВт⋅ч/т.

По окончании процесса электрохимической очистки алюминийсодержащих хлоридных растворов, возможно высаливание раствора с помощью соляной кислоты и с получением кристаллов AlCl3⋅6Н2О, которые в дальнейшем могут быть использованы для получения металлургического глинозема.

Пример осуществления изобретения

Для исследования использовали растворы объемом 100 мл, полученные после растворения бемит-каолинитовых бокситов Североонежского месторождения (Архангельская область) раствором 20% HCl. Выщелачивание исходного сырья проводили при непрерывном перемешивании в круглодонной колбе при температуре 110°С в течение 3 часов. Полученный раствор имел следующий состав (% по массе): Al - 1,150; Fe - 0,550; Cr - 0,055.

Алюминийсодержащий хлоридный раствор подвергали электрохимической очистке на лабораторной установке, включающей в себя электрохимическую ячейку емкостью 1,5 л и два соосных сосуда, между которыми находилась разделительная диафрагма. В сосуды опускались электроды, выполняющие функции катода и анода. В качестве катода использовался набор стальных мотков с заданной площадью поверхностью. Поверхность одного мотка - 200 см2. Анод был изготовлен из алюминиевой фольги. Расстояние между электродами составляло 2 см. Электроды перед и после проведения опыта промывали и взвешивали.

Алюминийсодержащий хлоридный раствор вводили в центральное катодное пространство ячейки (зона очищения), а удаляли из анодного пространства. Сила тока при проведении электрохимической очистки не превышала 20 А. Контроль параметров процесса осуществляли с помощью вольтметра, pH-метра, контактного термометра и аналитических весов. Остаточное содержание железа в растворе определяли с помощью спектрального анализатора.

Полученные результаты представлены в таблице 1.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 332.
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
Показаны записи 11-20 из 197.
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
+ добавить свой РИД