×
26.08.2017
217.015.e0f0

Результат интеллектуальной деятельности: Конструкционная литейная аустенитная стареющая сталь с высокой удельной прочностью и способ ее обработки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к конструкционной литейной аустенитной стареющей стали, используемой в различных отраслях промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении и в строительстве. Сталь содержит, мас.%: C 1,5-1,8, Mn 18-22, Al 8-12, Mo 0,8-1,2, Si 0,5-0,8, Cr ≤0,1, Ni ≤0,l, Cu ≤0,05, N ≤0,0020, Н ≤0,0002, S ≤0,0020, P ≤0,010, Sn, Pb, Bi и As не более 0,005 каждого, РЗМ 0,005-0,010, Fe – остальное. Сталь обладает высокой удельной прочностью. 4 н.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к металлургии конструкционных сталей, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, и предназначено для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении и в строительстве.

Известна высокопрочная немагнитная коррозионно-стойкая литейная сталь и способ ее термической обработки (RU 2447185 С1, опубл. 10.04.2012). Известная сталь содержит углерод, хром, никель, марганец, молибден, кремний, ниобий, ванадий, титан, церий, кальций, селен, алюминий, азот, железо и примеси при следующем соотношении, мас. %: углерод 0,03-0,06, хром 19-20,5, никель 8,25-9,0, марганец 14-16, кремний 0,10-0,40, ванадий 0,08-0,15, ниобий 0,02-0,12, титан 0,004-0,03, молибден 0,8-1,25, церий 0,005-0,02, селен 0,05-0,25, кальций 0,005-0,02, азот 0,57-0,65, алюминий 0,005-0,02, железо - остальное. При этом отношение суммарного содержания ванадия, ниобия, титана и алюминия к суммарному содержанию углерода и азота составляет 0,15-0,50, а для уменьшения дендритной ликвации проводится гомогенизирующая термообработка, заключающаяся в нагреве до температуры 850°С, далее нагрев до температуры 950°С, далее нагрев до 1100-1150°С и охлаждение в воду.

Недостатки этой стали заключаются в следующем:

Сталь неэкономична, так как имеет высокие содержания дорогостоящих элементов хрома (до 20,5%), никеля (до 9%) и молибдена (до 1.25%), а также высокое суммарное содержания микролегирующих элементов ниобия, ванадия, титана, церия, кальция, селена. Данная сталь нетехнологична, так как обеспечение требуемых концентраций микролегирующих элементов при дополнительном условии, что отношение суммарного содержания ванадия, ниобия, титана и алюминия к суммарному содержанию углерода и азота составляет 0,15-0,50, практически не реализуемо. При выплавке стали микролегирование этими химически активными элементами производится практически одновременно, а конечное их содержание зависит от ряда факторов, в том числе от режима последующих после микролегирования технологических операций. Содержание азота в стали зависит также от способа и времени его ввода по отношению к нитридообразующим элементам - ниобию, ванадию и титану.

Прототипом предложенного изобретения является высокопрочная дуплекс/триплекс сталь для легких конструкций и ее применение (US 2007125454 (A1) опубл. 07.06.2007).

Изобретение относится к стали для легкого строительства, имеющей многофазную структуру. В случае дуплекс стали структура состоит из феррита (альфа) и аустенита (гамма) кристаллов. В случае триплекс стали структура состоит из феррита, аустенита и мартенсита (эпсилон) и/или (каппа) фазы. Сталь имеет низкую плотность <7 г/см3 благодаря высокому содержанию легких элементов: Al, Mg, Ti, Si, Be, С. Сталь по патенту US 2007125454 (A1) имеет следующий состав, %: углерод 0,5-2, алюминий 8-12, кремний 3-6, сумма Al+Si>12, марганец 18-35, титан не больше 3, бор не больше 0,05. По крайней мере один из элементов Mg, Ga, Be не менее 0,3% в каждом случае и в сумме до 3%. Содержание ниобия и ванадия до 0,5%, азота до 0,3%.

Известная сталь может разливаться на установках непрерывной разливки, при отливке тонких слябов или при отливке тонкого штрипса, может использоваться как литейная сталь, пригодна для горячей и холодной прокатки, глубокой вытяжки и формования растяжением. Горячая деформация производится при температурах выше температур рекристаллизации. После холодной прокатки требуется рекристаллизационный отжиг. В холоднокатаном и рекристаллизованном состоянии сталь имеет мелкозернистую равноосную микроструктуру, планарную изотропию и прочность при растяжении около 900 МПа, а максимальное удлинение 70%.

Недостатки этой стали заключаются в следующем:

Данная сталь имеет слишком широкий интервал содержаний основных структурообразующих элементов Mn, Al, и С. Поэтому при значительном числе комбинаций содержаний данных элементов химического состава, определяемых изобретением, не могут быть получены заявленные структуры α+γ или α+γ+ε(κ) и соответственно ожидаемые свойства стали. Так например при содержании 25% Mn, 10% Al и заявленных содержаниях С при температуре ниже 500°С наряду с α и α- фазами могут выделяться карбиды марганца Mn5C2, Mn7C3, карбонитриды Ti, Nb и V в зависимости от режима охлаждения или термообработки после горячей деформации, которые в данном изобретении не регламентируются.

Сталь по патенту US 2007125454 (A1) содержит такие редкие и дорогостоящие элементы, как галлий и бериллий, при их содержаниях более 0,3% каждого, с учетом содержаний бора до 0,05%, ниобия до 0,5%, ванадия до 0,5% и титана до 3% сталь для промышленного производства неэкономична.

Данная сталь нетехнологична, так как обеспечение требуемых уровня и соотношения концентраций большого числа химически активных элементов Ti, Nb, Mg, Ga, Be, В и V технически сложно и при промышленном производстве трудно реализуемо, неизбежны непопадания в анализ по этим элементам и выпады свойств готового металла, если они действительно зависят от содержаний этих элементов и их соотношения.

Недостатком способа термодеформационной обработки по патенту US 2007125454 (A1) является неполнота информации о температурах гомогенизации перед горячей прокаткой и температурном режиме охлаждения или термообработки после горячей деформации, что не позволяет без дополнительных исследований получить заявленную микроструктуру.

В предлагаемом изобретении достигается технический результат, заключающийся в получении конструкционной литейной аустенитной стареющей стали с высокой удельной прочностью и в способе ее обработки, пригодной для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении и в строительстве при следующих ее характеристиках:

- кристаллизация по схеме L→γ, исключающей образование 8 феррита;

- сталь имеет многофазную структуру, состоящую из пластичной (γ) и прочной (α-мартенсит) базовых фаз и избыточной упрочняющей фазы каппа карбида (Fe,Mn)3AlCx), что обеспечивает ее высокие прочность и пластичность;

- стабильная аустенитная структура в высокотемпературной области 1000-1200°С;

- технологичность, так как сталь имеет простой химсостав без большого числа химически активных микролегирующих элементов;

- экономичность, так как сталь в своем составе не имеет дорогостоящих элементов, за исключением небольших содержаний молибдена и редкоземельных элементов.

Указанный технический результат в первом объекте изобретения достигается следующим образом.

Конструкционная литейная аустенитная стареющяя сталь с высокой удельной прочностью содержит следующие элементы при нижеуказанном соотношении, мас.%:

С - 1,5-1,8

Mn - 18-22

Al - 8-12

Мо - 0,8-1,2

Si - 0,5-0,8

Cr≤0,1

Ni≤0,1

Cu≤0.05

N≤0,0020

H≤0,0002

S≤0,0020

P≤0,010

Содержание Sn, Pb, Bi, As не более 0,005 каждого

Содержание редкоземельных элементов (РЗМ) 0,005-0,010

Fe – остальное,

при этом содержание азота и серы, обеспечивающее минимальное количество нитридов и сульфидов в марганецалюминиевой стали, должно быть не более 0.0020% каждого.

Указанный технический результат во втором объекте изобретения достигается следующим образом.

Отливка из конструкционной литейной аустенитной стареющей стали, отличающаяся тем, что она получена из стали, которая содержит следующие элементы при нижеуказанном соотношении, мас.%:

С - 1,5-1,8

Mn - 18-22

Al - 8-12

Мо - 0,8-1,2

Si - 0,5-0,8

Cr≤0,1

Ni≤0,1

Cu≤0.05

N≤0,0020

Н≤0,0002

S≤0,0020

Р≤0,010

Содержание Sn, Pb, Bi, As не более 0,005 каждого

Содержание редкоземельных элементов (РЗМ) 0,005-0,010

Fe – остальное.

Указанный технический результат в третьем объекте изобретения достигается следующим образом.

Способ термообработки конструкционной литейной аустенитной стареющей стали с высокой удельной прочностью, включающий нагрев отливки до температур 1000-1100°С, выдержку при этих температурах в течение 2 часов и охлаждение отливки в воде или в потоке воздуха со скоростью 1-2 м/с до комнатной температуры. При этом достигаются предел прочности при растяжении σв=700-800 МПа и предел текучести σт=500-600 МПа. Для повышения прочности сталь нагревается до 500-550°С, выдерживается при этой температуре не менее 2 часов и далее охлаждается на воздухе до комнатной температуры. После старения получаются свойства: σв=900-1000 МПа и σт=700-800 МПа.

Преимуществами предложенной в изобретении стали является то, что содержание основных структурообразующих элементов С, Mn, Al, Мо находится в узких пределах, благодаря чему для всех возможных при этом комбинаций химсостава равновесная структура стали ниже температуры солидуса и до 900°С состоит из γ-фазы, что гарантированно обеспечивает ее гомогенизацию при 1000-1100°С и получение при последующей термообработке отливки требуемой структуры, состоящей из пластичной γ-фазы после закалки от температур гомогенизации и структуры с упрочняющими фазами γ+κ или α+γ+κ после старения при 500-550°С. Предлагаемая сталь отличается также высокой экономичностью, так как имеет небольшие содержания дорогостоящих элементов Мо и РЗМ, а также высокой технологичностью, так как сталь имеет простой химсостав без химически активных микролегирующих элементов.

Предлагаемая сталь отличается высокой чистотой по примесям, что уменьшает их ликвацию по границам зерен и способствует получению более однородной структуры.

Содержание углерода в пределах 1,5-1,8% способствует получению в стали аустенитной структуры, обеспечивает необходимое упрочнение стали в процессе термической обработки. При большем содержании углерода в стали возможно выделение карбидов марганца при температуре гомогенизации и усложнение конечной структуры с соответствующим уменьшением механических и коррозионных свойств. При меньшем содержании углерода при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре.

Марганец и молибден в заданных пределах при содержании алюминия 8-12 мас.% при всех возможных комбинациях содержаний этих элементов в области составов, определяемой изобретением, обеспечивают однофазную γ-структуру стали ниже температуры солидуса и до 900°С, что гарантированно обеспечивает ее гомогенизацию при 1000-1100°С и получение при последующей термообработке отливки требуемой многофазной структуры, состоящей из γ+κ или γ+α+κ после старения при 500-550°С.

При содержании легирующих элементов (Mn, Мо) ниже заявляемого предела при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре. При большем содержании марганца вследствие уменьшения теплопроводности стали при затвердевании образуется грубая дендритная структура, не устраняющаяся при гомогенизации. Кроме того, повышенное содержание марганца затрудняет процесс выплавки стали. Повышенное содержание Мо нежелательно, так как повышает себестоимость стали.

Алюминий в указанных пределах обеспечивает необходимую степень уменьшения плотности стали. При большем содержании алюминия не получается аустенитная структура при температурах гомогенизации 1000-1100°С. При меньшем содержании алюминия не обеспечивается требуемая степень уменьшения плотности стали.

Кремний в указанных пределах способствует более полному удалению неметаллических включений, а также способствует уменьшению плотности стали. При большем содержании кремния увеличивается вероятность появления α-фазы в области температур 1000-1100°С.

Присутствие в стали редкоземельных элементов (РЗЭ) в количестве 0,005-0,010% стабилизирует размер зерна и допускает нагрев металла для гомогенизации до более высокой температуры, что обеспечивает полное растворение избыточных фаз и получение чисто аустенитной структуры при температурах 1000-1100°С. При большем содержании РЗМ возможно появление в металле крупных неметаллических включений, меньшее содержание РЗМ неэффективно.

Присутствие примесей усложняет получение заданной структуры и свойств. Поэтому данная сталь должна выплавляться по технологии чистой стали. Требуемый по изобретению предел содержаний вредных примесей Р≤0,010, S≤0,0020, Sn≤0,005, Pb≤0,005, As≤0,005, Bi≤0,005, Cr≤0,1, Ni≤0,1, Cu≤0.05, N≤0,0020, H≤0,0002 в стали обеспечивает наибольший при заданном составе уровень свойств. При большем содержании примесей проявляется их отрицательное влияние на структуру и свойства стали и процессы структурообразования. Существенно меньшее содержание примесей в настоящее время технологически трудно реализуемо. Особенно важно для марганец-алюминиевой стали, чтобы содержание азота и серы, обеспечивающее минимальное количество нитридов и сульфидов было не более 0.0020% каждого.

При способе термообработки по изобретению сталь получает после гомогенизации чисто аустенитную структуру, а после старения γ+κ или γ+α+κ требуемую многофазную структуру.

При несоблюдении режимов нагрева при гомогенизации и термообработки после гомогенизации получение заявленной по изобретению структуры и соответствующих свойств невозможно.

Пример реализации выплавки и обработки стали

В опытном порядке сталь заявленного состава была выплавлена в вакуумной индукционной печи вместимостью 50 кг по жидкому металлу. Использовали чистые шихтовые материалы: железо 008ЖР, электролитический марганец, гранулированный чистый алюминий, молибден МЧШ-1 (99,77), графит. После легирования и перемешивания расплава с целью усреднения отливали образцы диаметром 20 мм. Химсостав полученной стали представлен в таблице.

Образцы гомогенизировали при 1100°С в течение 2 часов и охлаждали в воде. После этого из образцов приготовляли пробы для исследования структуры и свойств. Получили после закалки однофазную структуру γ и свойства: σв=740 МПа, σт=600 МПа. Для старения пробы нагревали до 540°С, выдерживали при этой температуре 2 часа и затем охлаждали на воздухе до комнатной температуры. После старения получили требуемые структуру γ+α+κ и свойства: σв=930 МПа, σт=760 МПа.

Источник поступления информации: Роспатент

Показаны записи 271-280 из 334.
21.08.2019
№219.017.c1c9

Многокомпонентный двухслойный биоактивный материал с контролируемым антибактериальным эффектом

Изобретение относится к области медицинской техники, а именно к двухслойному многокомпонентному наноструктурному покрытию для металлических, полимерных и костных имплантатов, используемых при замене поврежденных участков костной ткани. Покрытие состоит из нижнего слоя толщиной от 100 нм до...
Тип: Изобретение
Номер охранного документа: 0002697720
Дата охранного документа: 19.08.2019
05.09.2019
№219.017.c6ff

Устройство для пульсирующего воздействия на жидкость, находящуюся в системе скважина - угольный пласт

Предлагаемое изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов с целью повышения безопасности работ в шахтах, а также для добычи метана из угольных пластов с последующим использованием его в промышленности. Конструкция предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002699099
Дата охранного документа: 03.09.2019
05.09.2019
№219.017.c73e

Способ формирования техногенного месторождения и его последующей отработки

Изобретение относится к горному делу, в частности к разработке полезных ископаемых открытым способом. Техническим результатом является создание техногенного месторождения совместно с формированием отвала горных пород максимальной емкости и устойчивости, а также повышение экологической...
Тип: Изобретение
Номер охранного документа: 0002699097
Дата охранного документа: 03.09.2019
05.09.2019
№219.017.c752

Способ разделки блоков природного камня

Изобретение относится к горной промышленности, а именно к промышленности строительных материалов, в частности к технологическим процессам по добыче и распиливанию блоков природного камня. Техническим результатом является уменьшение потребления энергии на движение пилы во время ее полезной...
Тип: Изобретение
Номер охранного документа: 0002699096
Дата охранного документа: 03.09.2019
05.09.2019
№219.017.c780

Способ обратимого ингибирования в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина в

Изобретение относится к области биотехнологии, а именно к обратимому ингибированию в опухолевых клетках гепатоцеллюлярной карциномы экспрессии гена, кодирующего синтез аполипопротеина В. Способ включает введение дисперсии липидных наночастиц, в качестве которых используют наночастицы...
Тип: Изобретение
Номер охранного документа: 0002699172
Дата охранного документа: 03.09.2019
07.09.2019
№219.017.c847

Способ определения изменения устойчивости мерзлых грунтовых оснований

Изобретение относится к инженерно-геологическим изысканиям, в частности к способам определения изменения устойчивости мерзлых грунтовых оснований. Согласно заявленному способу в грунтовом основании размещают зонды, каждый из которых содержит нагревательный элемент, приемный акустический...
Тип: Изобретение
Номер охранного документа: 0002699385
Дата охранного документа: 05.09.2019
07.09.2019
№219.017.c8b9

Латунь для сверхпластической формовки деталей с малой остаточной пористостью

Изобретение относится к области цветной металлургии, а именно к составам латуни, и предназначено для изготовления сверхпластичных листов из сплава системы Cu-Zn-Al. Лист из двухфазной латуни для сверхпластической формовки изделий с пониженной остаточной пористостью, не превышающей 1,5%,...
Тип: Изобретение
Номер охранного документа: 0002699423
Дата охранного документа: 05.09.2019
07.09.2019
№219.017.c8d5

Деформируемый алюминиево-кальциевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С. Среди...
Тип: Изобретение
Номер охранного документа: 0002699422
Дата охранного документа: 05.09.2019
12.09.2019
№219.017.ca36

Способ получения композиционного материала на основе ванадиевого сплава и стали

Изобретение относится к области промышленных технологий получения композиционных материалов, а именно к деформационно-термической обработке композиционных материалов на основе металлов и сплавов. Способ получения композиционного материала, состоящего из внутреннего слоя из ванадиевого сплава V...
Тип: Изобретение
Номер охранного документа: 0002699879
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca64

Способ модуляции лазерного излучения и устройство для его осуществления

Группа изобретений относится к акустооптике и лазерной технике. Способ модуляции лазерного излучения включает возбуждение в монокристалле группы KRE(WO) амплитудно-модулированной бегущей квазисдвиговой акустической волны. Волна поляризована ортогонально оси N и распространяется в плоскости NmNg...
Тип: Изобретение
Номер охранного документа: 0002699947
Дата охранного документа: 11.09.2019
Показаны записи 201-201 из 201.
27.05.2023
№223.018.715a

Способ изготовления литых заготовок из антифрикционной бронзы

Изобретение относится к области металлургии, в частности к способам получения литых заготовок из антифрикционных оловянно-свинцовых бронз, предназначенных для диффузионной сварки со сталью для создания узлов трения средней нагрузки и скоростей скольжения. Способ изготовления литых заготовок из...
Тип: Изобретение
Номер охранного документа: 0002762956
Дата охранного документа: 24.12.2021
+ добавить свой РИД