×
26.08.2017
217.015.e0f0

Результат интеллектуальной деятельности: Конструкционная литейная аустенитная стареющая сталь с высокой удельной прочностью и способ ее обработки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к конструкционной литейной аустенитной стареющей стали, используемой в различных отраслях промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении и в строительстве. Сталь содержит, мас.%: C 1,5-1,8, Mn 18-22, Al 8-12, Mo 0,8-1,2, Si 0,5-0,8, Cr ≤0,1, Ni ≤0,l, Cu ≤0,05, N ≤0,0020, Н ≤0,0002, S ≤0,0020, P ≤0,010, Sn, Pb, Bi и As не более 0,005 каждого, РЗМ 0,005-0,010, Fe – остальное. Сталь обладает высокой удельной прочностью. 4 н.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к металлургии конструкционных сталей, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, и предназначено для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении и в строительстве.

Известна высокопрочная немагнитная коррозионно-стойкая литейная сталь и способ ее термической обработки (RU 2447185 С1, опубл. 10.04.2012). Известная сталь содержит углерод, хром, никель, марганец, молибден, кремний, ниобий, ванадий, титан, церий, кальций, селен, алюминий, азот, железо и примеси при следующем соотношении, мас. %: углерод 0,03-0,06, хром 19-20,5, никель 8,25-9,0, марганец 14-16, кремний 0,10-0,40, ванадий 0,08-0,15, ниобий 0,02-0,12, титан 0,004-0,03, молибден 0,8-1,25, церий 0,005-0,02, селен 0,05-0,25, кальций 0,005-0,02, азот 0,57-0,65, алюминий 0,005-0,02, железо - остальное. При этом отношение суммарного содержания ванадия, ниобия, титана и алюминия к суммарному содержанию углерода и азота составляет 0,15-0,50, а для уменьшения дендритной ликвации проводится гомогенизирующая термообработка, заключающаяся в нагреве до температуры 850°С, далее нагрев до температуры 950°С, далее нагрев до 1100-1150°С и охлаждение в воду.

Недостатки этой стали заключаются в следующем:

Сталь неэкономична, так как имеет высокие содержания дорогостоящих элементов хрома (до 20,5%), никеля (до 9%) и молибдена (до 1.25%), а также высокое суммарное содержания микролегирующих элементов ниобия, ванадия, титана, церия, кальция, селена. Данная сталь нетехнологична, так как обеспечение требуемых концентраций микролегирующих элементов при дополнительном условии, что отношение суммарного содержания ванадия, ниобия, титана и алюминия к суммарному содержанию углерода и азота составляет 0,15-0,50, практически не реализуемо. При выплавке стали микролегирование этими химически активными элементами производится практически одновременно, а конечное их содержание зависит от ряда факторов, в том числе от режима последующих после микролегирования технологических операций. Содержание азота в стали зависит также от способа и времени его ввода по отношению к нитридообразующим элементам - ниобию, ванадию и титану.

Прототипом предложенного изобретения является высокопрочная дуплекс/триплекс сталь для легких конструкций и ее применение (US 2007125454 (A1) опубл. 07.06.2007).

Изобретение относится к стали для легкого строительства, имеющей многофазную структуру. В случае дуплекс стали структура состоит из феррита (альфа) и аустенита (гамма) кристаллов. В случае триплекс стали структура состоит из феррита, аустенита и мартенсита (эпсилон) и/или (каппа) фазы. Сталь имеет низкую плотность <7 г/см3 благодаря высокому содержанию легких элементов: Al, Mg, Ti, Si, Be, С. Сталь по патенту US 2007125454 (A1) имеет следующий состав, %: углерод 0,5-2, алюминий 8-12, кремний 3-6, сумма Al+Si>12, марганец 18-35, титан не больше 3, бор не больше 0,05. По крайней мере один из элементов Mg, Ga, Be не менее 0,3% в каждом случае и в сумме до 3%. Содержание ниобия и ванадия до 0,5%, азота до 0,3%.

Известная сталь может разливаться на установках непрерывной разливки, при отливке тонких слябов или при отливке тонкого штрипса, может использоваться как литейная сталь, пригодна для горячей и холодной прокатки, глубокой вытяжки и формования растяжением. Горячая деформация производится при температурах выше температур рекристаллизации. После холодной прокатки требуется рекристаллизационный отжиг. В холоднокатаном и рекристаллизованном состоянии сталь имеет мелкозернистую равноосную микроструктуру, планарную изотропию и прочность при растяжении около 900 МПа, а максимальное удлинение 70%.

Недостатки этой стали заключаются в следующем:

Данная сталь имеет слишком широкий интервал содержаний основных структурообразующих элементов Mn, Al, и С. Поэтому при значительном числе комбинаций содержаний данных элементов химического состава, определяемых изобретением, не могут быть получены заявленные структуры α+γ или α+γ+ε(κ) и соответственно ожидаемые свойства стали. Так например при содержании 25% Mn, 10% Al и заявленных содержаниях С при температуре ниже 500°С наряду с α и α- фазами могут выделяться карбиды марганца Mn5C2, Mn7C3, карбонитриды Ti, Nb и V в зависимости от режима охлаждения или термообработки после горячей деформации, которые в данном изобретении не регламентируются.

Сталь по патенту US 2007125454 (A1) содержит такие редкие и дорогостоящие элементы, как галлий и бериллий, при их содержаниях более 0,3% каждого, с учетом содержаний бора до 0,05%, ниобия до 0,5%, ванадия до 0,5% и титана до 3% сталь для промышленного производства неэкономична.

Данная сталь нетехнологична, так как обеспечение требуемых уровня и соотношения концентраций большого числа химически активных элементов Ti, Nb, Mg, Ga, Be, В и V технически сложно и при промышленном производстве трудно реализуемо, неизбежны непопадания в анализ по этим элементам и выпады свойств готового металла, если они действительно зависят от содержаний этих элементов и их соотношения.

Недостатком способа термодеформационной обработки по патенту US 2007125454 (A1) является неполнота информации о температурах гомогенизации перед горячей прокаткой и температурном режиме охлаждения или термообработки после горячей деформации, что не позволяет без дополнительных исследований получить заявленную микроструктуру.

В предлагаемом изобретении достигается технический результат, заключающийся в получении конструкционной литейной аустенитной стареющей стали с высокой удельной прочностью и в способе ее обработки, пригодной для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении и в строительстве при следующих ее характеристиках:

- кристаллизация по схеме L→γ, исключающей образование 8 феррита;

- сталь имеет многофазную структуру, состоящую из пластичной (γ) и прочной (α-мартенсит) базовых фаз и избыточной упрочняющей фазы каппа карбида (Fe,Mn)3AlCx), что обеспечивает ее высокие прочность и пластичность;

- стабильная аустенитная структура в высокотемпературной области 1000-1200°С;

- технологичность, так как сталь имеет простой химсостав без большого числа химически активных микролегирующих элементов;

- экономичность, так как сталь в своем составе не имеет дорогостоящих элементов, за исключением небольших содержаний молибдена и редкоземельных элементов.

Указанный технический результат в первом объекте изобретения достигается следующим образом.

Конструкционная литейная аустенитная стареющяя сталь с высокой удельной прочностью содержит следующие элементы при нижеуказанном соотношении, мас.%:

С - 1,5-1,8

Mn - 18-22

Al - 8-12

Мо - 0,8-1,2

Si - 0,5-0,8

Cr≤0,1

Ni≤0,1

Cu≤0.05

N≤0,0020

H≤0,0002

S≤0,0020

P≤0,010

Содержание Sn, Pb, Bi, As не более 0,005 каждого

Содержание редкоземельных элементов (РЗМ) 0,005-0,010

Fe – остальное,

при этом содержание азота и серы, обеспечивающее минимальное количество нитридов и сульфидов в марганецалюминиевой стали, должно быть не более 0.0020% каждого.

Указанный технический результат во втором объекте изобретения достигается следующим образом.

Отливка из конструкционной литейной аустенитной стареющей стали, отличающаяся тем, что она получена из стали, которая содержит следующие элементы при нижеуказанном соотношении, мас.%:

С - 1,5-1,8

Mn - 18-22

Al - 8-12

Мо - 0,8-1,2

Si - 0,5-0,8

Cr≤0,1

Ni≤0,1

Cu≤0.05

N≤0,0020

Н≤0,0002

S≤0,0020

Р≤0,010

Содержание Sn, Pb, Bi, As не более 0,005 каждого

Содержание редкоземельных элементов (РЗМ) 0,005-0,010

Fe – остальное.

Указанный технический результат в третьем объекте изобретения достигается следующим образом.

Способ термообработки конструкционной литейной аустенитной стареющей стали с высокой удельной прочностью, включающий нагрев отливки до температур 1000-1100°С, выдержку при этих температурах в течение 2 часов и охлаждение отливки в воде или в потоке воздуха со скоростью 1-2 м/с до комнатной температуры. При этом достигаются предел прочности при растяжении σв=700-800 МПа и предел текучести σт=500-600 МПа. Для повышения прочности сталь нагревается до 500-550°С, выдерживается при этой температуре не менее 2 часов и далее охлаждается на воздухе до комнатной температуры. После старения получаются свойства: σв=900-1000 МПа и σт=700-800 МПа.

Преимуществами предложенной в изобретении стали является то, что содержание основных структурообразующих элементов С, Mn, Al, Мо находится в узких пределах, благодаря чему для всех возможных при этом комбинаций химсостава равновесная структура стали ниже температуры солидуса и до 900°С состоит из γ-фазы, что гарантированно обеспечивает ее гомогенизацию при 1000-1100°С и получение при последующей термообработке отливки требуемой структуры, состоящей из пластичной γ-фазы после закалки от температур гомогенизации и структуры с упрочняющими фазами γ+κ или α+γ+κ после старения при 500-550°С. Предлагаемая сталь отличается также высокой экономичностью, так как имеет небольшие содержания дорогостоящих элементов Мо и РЗМ, а также высокой технологичностью, так как сталь имеет простой химсостав без химически активных микролегирующих элементов.

Предлагаемая сталь отличается высокой чистотой по примесям, что уменьшает их ликвацию по границам зерен и способствует получению более однородной структуры.

Содержание углерода в пределах 1,5-1,8% способствует получению в стали аустенитной структуры, обеспечивает необходимое упрочнение стали в процессе термической обработки. При большем содержании углерода в стали возможно выделение карбидов марганца при температуре гомогенизации и усложнение конечной структуры с соответствующим уменьшением механических и коррозионных свойств. При меньшем содержании углерода при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре.

Марганец и молибден в заданных пределах при содержании алюминия 8-12 мас.% при всех возможных комбинациях содержаний этих элементов в области составов, определяемой изобретением, обеспечивают однофазную γ-структуру стали ниже температуры солидуса и до 900°С, что гарантированно обеспечивает ее гомогенизацию при 1000-1100°С и получение при последующей термообработке отливки требуемой многофазной структуры, состоящей из γ+κ или γ+α+κ после старения при 500-550°С.

При содержании легирующих элементов (Mn, Мо) ниже заявляемого предела при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре. При большем содержании марганца вследствие уменьшения теплопроводности стали при затвердевании образуется грубая дендритная структура, не устраняющаяся при гомогенизации. Кроме того, повышенное содержание марганца затрудняет процесс выплавки стали. Повышенное содержание Мо нежелательно, так как повышает себестоимость стали.

Алюминий в указанных пределах обеспечивает необходимую степень уменьшения плотности стали. При большем содержании алюминия не получается аустенитная структура при температурах гомогенизации 1000-1100°С. При меньшем содержании алюминия не обеспечивается требуемая степень уменьшения плотности стали.

Кремний в указанных пределах способствует более полному удалению неметаллических включений, а также способствует уменьшению плотности стали. При большем содержании кремния увеличивается вероятность появления α-фазы в области температур 1000-1100°С.

Присутствие в стали редкоземельных элементов (РЗЭ) в количестве 0,005-0,010% стабилизирует размер зерна и допускает нагрев металла для гомогенизации до более высокой температуры, что обеспечивает полное растворение избыточных фаз и получение чисто аустенитной структуры при температурах 1000-1100°С. При большем содержании РЗМ возможно появление в металле крупных неметаллических включений, меньшее содержание РЗМ неэффективно.

Присутствие примесей усложняет получение заданной структуры и свойств. Поэтому данная сталь должна выплавляться по технологии чистой стали. Требуемый по изобретению предел содержаний вредных примесей Р≤0,010, S≤0,0020, Sn≤0,005, Pb≤0,005, As≤0,005, Bi≤0,005, Cr≤0,1, Ni≤0,1, Cu≤0.05, N≤0,0020, H≤0,0002 в стали обеспечивает наибольший при заданном составе уровень свойств. При большем содержании примесей проявляется их отрицательное влияние на структуру и свойства стали и процессы структурообразования. Существенно меньшее содержание примесей в настоящее время технологически трудно реализуемо. Особенно важно для марганец-алюминиевой стали, чтобы содержание азота и серы, обеспечивающее минимальное количество нитридов и сульфидов было не более 0.0020% каждого.

При способе термообработки по изобретению сталь получает после гомогенизации чисто аустенитную структуру, а после старения γ+κ или γ+α+κ требуемую многофазную структуру.

При несоблюдении режимов нагрева при гомогенизации и термообработки после гомогенизации получение заявленной по изобретению структуры и соответствующих свойств невозможно.

Пример реализации выплавки и обработки стали

В опытном порядке сталь заявленного состава была выплавлена в вакуумной индукционной печи вместимостью 50 кг по жидкому металлу. Использовали чистые шихтовые материалы: железо 008ЖР, электролитический марганец, гранулированный чистый алюминий, молибден МЧШ-1 (99,77), графит. После легирования и перемешивания расплава с целью усреднения отливали образцы диаметром 20 мм. Химсостав полученной стали представлен в таблице.

Образцы гомогенизировали при 1100°С в течение 2 часов и охлаждали в воде. После этого из образцов приготовляли пробы для исследования структуры и свойств. Получили после закалки однофазную структуру γ и свойства: σв=740 МПа, σт=600 МПа. Для старения пробы нагревали до 540°С, выдерживали при этой температуре 2 часа и затем охлаждали на воздухе до комнатной температуры. После старения получили требуемые структуру γ+α+κ и свойства: σв=930 МПа, σт=760 МПа.

Источник поступления информации: Роспатент

Показаны записи 161-170 из 334.
19.01.2018
№218.016.0d0d

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе γ-TiAl. Интерметаллический сплав на основе TiAl содержит, ат.%: алюминий 44-46, ниобий 5-7, хром 1-3, цирконий 1-2, бор 0,1-0,5, лантан ≤0,2, титан - остальное. Сплав характеризуется мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002633135
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d7e

Композиционный материал на полимерной основе для комбинированной защиты гамма, нейтронного и электромагнитного излучения, наполненный нанопорошком вольфрама, нитрида бора и технического углерода

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%....
Тип: Изобретение
Номер охранного документа: 0002632934
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d88

Способ измерения характеристик аморфных ферромагнитных микропроводов

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко...
Тип: Изобретение
Номер охранного документа: 0002632996
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d9c

Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002632932
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.157b

Биоинженерная конструкция с антибактериальным покрытием для замещения костно-хрящевых дефектов

Изобретение относится к области медицины, а именно к ортопедии, травматологии и трансплантологии, и предназначено для изготовления протезов, скаффолдов и биоимплантатов для замещения костно-хрящевых дефектов. Биоинженерная многослойная конструкция на основе биосовместимого...
Тип: Изобретение
Номер охранного документа: 0002634860
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1710

Способ прошивки в стане винтовой прокатки

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб и полых трубных заготовок винтовой прошивкой. Способ включает прошивку круглой заготовки в стане винтовой прокатки. Уменьшение разностенности и овальности труб и гильз...
Тип: Изобретение
Номер охранного документа: 0002635685
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.175e

Способ деформационно-термической обработки для формирования функциональных характеристик медицинского клипирующего устройства из сплава ti-ni с памятью формы

Изобретение относится к металлургии, а именно к термомеханической обработке изделий из сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ), в частности клипирующего устройства для создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах...
Тип: Изобретение
Номер охранного документа: 0002635676
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.17bc

Способ подготовки к работе воздушной фурмы доменной печи

Изобретение относится к области металлургии и может быть использовано при подготовке к работе воздушных фурм доменных печей. Осуществляют очистку наружного стакана и рыльной части металлической дробью, напыление на них алюмосодержащего газотермического покрытия, установление теплоизолирующей...
Тип: Изобретение
Номер охранного документа: 0002635489
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.186d

Способ получения лигатуры на медно-никелевой основе

Изобретение относится к металлургии и может быть использовано при производстве лигатур на основе меди, никеля, магния и алюминия. При производстве лигатуры шихтовые материалы в виде гранул чистых металлов размером от 1 до 10 мм, таких как никель, медь и магний смешивают в требуемых пропорциях и...
Тип: Изобретение
Номер охранного документа: 0002635490
Дата охранного документа: 13.11.2017
13.02.2018
№218.016.20a4

Устройство для повышения тягового усилия локомотива

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для повышения тягового усилия локомотива. Устройство для повышения тягового усилия локомотива включает систему подачи песка под колеса локомотива, систему дополнительных воздуховодов, расположенных попарно по...
Тип: Изобретение
Номер охранного документа: 0002641611
Дата охранного документа: 18.01.2018
Показаны записи 161-170 из 201.
19.01.2018
№218.016.0d0d

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе γ-TiAl. Интерметаллический сплав на основе TiAl содержит, ат.%: алюминий 44-46, ниобий 5-7, хром 1-3, цирконий 1-2, бор 0,1-0,5, лантан ≤0,2, титан - остальное. Сплав характеризуется мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002633135
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d7e

Композиционный материал на полимерной основе для комбинированной защиты гамма, нейтронного и электромагнитного излучения, наполненный нанопорошком вольфрама, нитрида бора и технического углерода

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%....
Тип: Изобретение
Номер охранного документа: 0002632934
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d88

Способ измерения характеристик аморфных ферромагнитных микропроводов

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко...
Тип: Изобретение
Номер охранного документа: 0002632996
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d9c

Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002632932
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.157b

Биоинженерная конструкция с антибактериальным покрытием для замещения костно-хрящевых дефектов

Изобретение относится к области медицины, а именно к ортопедии, травматологии и трансплантологии, и предназначено для изготовления протезов, скаффолдов и биоимплантатов для замещения костно-хрящевых дефектов. Биоинженерная многослойная конструкция на основе биосовместимого...
Тип: Изобретение
Номер охранного документа: 0002634860
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1710

Способ прошивки в стане винтовой прокатки

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб и полых трубных заготовок винтовой прошивкой. Способ включает прошивку круглой заготовки в стане винтовой прокатки. Уменьшение разностенности и овальности труб и гильз...
Тип: Изобретение
Номер охранного документа: 0002635685
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.175e

Способ деформационно-термической обработки для формирования функциональных характеристик медицинского клипирующего устройства из сплава ti-ni с памятью формы

Изобретение относится к металлургии, а именно к термомеханической обработке изделий из сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ), в частности клипирующего устройства для создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах...
Тип: Изобретение
Номер охранного документа: 0002635676
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.17bc

Способ подготовки к работе воздушной фурмы доменной печи

Изобретение относится к области металлургии и может быть использовано при подготовке к работе воздушных фурм доменных печей. Осуществляют очистку наружного стакана и рыльной части металлической дробью, напыление на них алюмосодержащего газотермического покрытия, установление теплоизолирующей...
Тип: Изобретение
Номер охранного документа: 0002635489
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.186d

Способ получения лигатуры на медно-никелевой основе

Изобретение относится к металлургии и может быть использовано при производстве лигатур на основе меди, никеля, магния и алюминия. При производстве лигатуры шихтовые материалы в виде гранул чистых металлов размером от 1 до 10 мм, таких как никель, медь и магний смешивают в требуемых пропорциях и...
Тип: Изобретение
Номер охранного документа: 0002635490
Дата охранного документа: 13.11.2017
13.02.2018
№218.016.20a4

Устройство для повышения тягового усилия локомотива

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для повышения тягового усилия локомотива. Устройство для повышения тягового усилия локомотива включает систему подачи песка под колеса локомотива, систему дополнительных воздуховодов, расположенных попарно по...
Тип: Изобретение
Номер охранного документа: 0002641611
Дата охранного документа: 18.01.2018
+ добавить свой РИД