×
26.08.2017
217.015.e02d

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ПРУТКОВ ИЗ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ ДЛЯ ПОЛУЧЕНИЯ НИЗКИХ ЗНАЧЕНИЙ ТЕРМИЧЕСКОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ В НАПРАВЛЕНИИ ОСИ ПРУТКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к способам термомеханической обработки прутков из двухфазных титановых сплавов. Способ термомеханической обработки прутков из двухфазных титановых сплавов с молибденовым эквивалентом от 3,3 до 22% включает закалку прутка и его холодную деформацию. Перед закалкой пруток подвергают горячей деформации при температуре в диапазоне от 500°C до Т-20°C с обеспечением аксиальной текстуры β-фазы <110> с полюсной плотностью не менее трех. Закалку прутка осуществляют с температур в диапазоне от 720°C до Т с последующей холодной деформацией вдоль оси прутка при температуре не выше 300°C и с относительным удлинением от 1 до 30%, где Т - температура полиморфного превращения сплава. Сплав характеризуется низким термическим коэффициентом линейного расширения при высоких значениях прочности и удовлетворительной пластичности. 1 ил., 2 табл., 1 пр.

Изобретение относится к области машиностроения, а именно описывает способ термомеханической обработки прутков из двухфазных титановых сплавов для получения низких значений термического коэффициента линейного расширения в направлении оси прутка, то есть для реализации одномерного инвар-эффекта в двухфазных титановых сплавах.

В инварном сплаве Н36 (Fe-36%Ni) [1] инвар-эффект связан с ферромагнитностью этого материала, и поэтому такой материал не требует какой-либо специальной термомеханической обработки для реализации инвар-эффекта. Недостатками данного материала является недостаточная прочность при высокой плотности, а также недостаточно низкие значения термического коэффициента линейного расширения (ТКЛР), а также ограниченная коррозионная стойкость.

Также известен неферромагнитный сплав 93ЦТ (Zr-(6-8%)Ti), характеризующийся достаточно высокой пластичностью и коррозионной стойкостью [2]. К недостаткам этого материала можно отнести также сравнительно высокие значения ТКЛР, а также ограниченный температурный интервал проявления инвар-эффекта (-100…150°С) при повышенной плотности.

Недостатком другого существующего сплава Cr - (3-7%)Fe - (0.2-1.5%)Mn - (0.001-1.0%)La является крайне узкий интервал пониженных значений ТКЛР (0…40°С) при катастрофически низкой пластичности при комнатных температурах и высокой плотности [2]. Кроме того, сплав является нетехнологичным.

Известен способ реализации инвар-эффекта в титановых сплавах, легированных 2…20% (масс.) ванадия, а также опционально ниобием и танталом [2, 3], используемый для получения состояния с низким термическим расширением в диапазоне температур от -150 до 200°С, включающий закалку сплава из однофазной β-области для получения структуры α''-мартенсита с последующей холодной прокаткой с обжатием 30…70% для получения преимущественной кристаллографической ориентировки (текстуры) мартенсита. Инвар-эффект в данном случае реализуется за счет анизотропии свойств кристаллической решетки мартенсита вдоль осей «а», «b» и «с».

Данный способ является близким к предлагаемому техническому решению. Недостатком данного подхода является необходимость использования специальных прецизионных сплавов, а также недостаточный уровень прочностных свойств в состоянии после обработки. Последнее отчасти связано с необходимостью закалки сплава из однофазной β-области, что приводит к сильному росту зерен с последующим падением прочностных и пластических свойств. Кроме того, способ требует проведения прокатки с сильными обжатиями в холодном состоянии, когда пластичность сплава является низкой.

Задача, на решение которой направлено изобретение, заключается в формировании состояния в прутках из коррозионностойких неферромагнитных промышленных титановых двухфазных титановых сплавов с низким контролируемым значением ТКЛР (вплоть до отрицательного), которое характеризуется повышенной прочностью при удовлетворительной пластичности.

Техническим результатом изобретения является низкое значение ТКЛР (-3…3) в интервале температур -140…+70°С при высоких значениях прочности (более 900 МПа) и удовлетворительной пластичности (более 5%).

Указанный результат достигается за счет комплексной термомеханической обработки, которая включает горячую деформацию прутка при температуре в диапазоне 500°С…Тпп-20°С для получения аксиальной текстуры β-фазы <110> с полюсной плотностью не менее 3, закалку прутка с температур в интервале 720°С…Тпп с последующей холодной деформацией вдоль оси прутка, при температуре не выше 300°С и с относительным удлинением от 1 до 30%, где Тпп - температура полного полиморфного превращения используемой плавки сплава.

В качестве материала, из которого производится пруток, могут выступать двухфазные титановые сплавы, условный молибденовый эквивалент которых находится в интервале от 3,3 до 22%.

Сущность изобретения: достижение вышеуказанного технического результата изобретения основано на анизотропии термического расширения кристаллической решетки α''-мартенсита, формирование которого возможно при охлаждении и деформации титановых сплавов.

При деформировании двухфазных титановых сплавов при повышенных температурах происходит текстурирование β-фазы, то есть возникновение в материале преимущественной кристаллографической ориентировки. При этом частицы α-фазы, сохраняющиеся в структуре сплава до температуры полного полиморфного превращения (Тпп), препятствуют протеканию рекристаллизации β-фазы, при которой может изменяться сформированная деформацией текстура. При последующей закалке происходит фиксация метастабильной β-фазы с текстурным состоянием, которое было сформировано при горячей деформации. Деформирование закаленного сплава в холодном состоянии приводит к повышению температуры начала мартенситного превращения выше комнатной и протеканию деформационно-индуцированного прямого β→α''-мартенситного превращения. Формирующая при этом α''-мартенситная фаза наследует текстурное состояние от β-фазы. Преимущественная аксиальная текстура (010) α''-мартенситной фазы вследствие отрицательного термического расширения вдоль оси «b» ее кристаллической решетки обеспечивает компенсацию термического расширения/сужения материала в указанном интервале температур.

С целью реализации инвар-эффекта сплавы, из которых изготовлены прутки, должны характеризоваться следующим. Во-первых, должна иметься возможность фиксации метастабильной β-фазы при закалке. Во-вторых, химический состав β-фазы должен обеспечивать возможность протекания деформационно-индуцированного β→α''-мартенситного превращения при комнатных температурах. Использование сплавов с молибденовым эквивалентом менее 3,3% исключает возможность сохранить в закаленном состоянии β-фазу в достаточном количестве, а в сплавах с эквивалентом свыше 22% стабильность закаленной β-фазы оказывается слишком высокой для протекания деформационно-индуцированного мартенситного превращения при комнатной температуре.

Предшествующее закалке деформирование прутков при этом должно осуществляться при температурах, обеспечивающих максимально высокую объемную долю β-фазы в структуре материала, при этом сохраняющаяся в структуре α-фаза должна эффективно подавлять протекание рекристаллизационных процессов в материале. Как показали исследования, при температурах ниже 500°С объемная доля β-фазы в структуре является пренебрежимо низкой, а выше Тпп-20° доля α-фазы оказывается недостаточной для торможения рекристаллизации. Температура последующей закалки была выбрана таким образом, чтобы, с одной стороны, обеспечить фиксацию метастабильной β-фазы при комнатной температуре, а с другой стороны, сохранялась возможность протекания деформационно-индуцированного мартенситного превращения. Закалка с температур ниже 720°С приводит к получению β-фазы с температурой начала мартенситного превращения значительно ниже комнатной. Степень холодной деформации должна быть достаточной для протекания β→α''-мартенситного превращения при комнатной температуре. Меньшая степень деформации не обеспечивает необходимого повышения температуре начала мартенситного превращения, а более высокая приводит к получению α'-мартенсита в структуре, реализация инвар-эффекта, при котором является невозможной.

Пример.

Предлагаемое техническое решение подтверждено на примере термомеханической обработки промышленного сплава ВТ16 (Ti-3Al-5Mo-5V), условный молибденовый эквивалент которого равен 8,25.

В процессе обработки исходная заготовка под пруток диаметром 12 мм подвергалась волочению на конечный диаметр 5.3 мм и закаливалась в воду с температуры 760°С. Затем пруток при комнатной температуре подвергался одноосному растяжению вдоль оси до достижения относительной степени деформации 0.7…8.0%. Значения ТКЛР определялись с помощью высокоточного дифференциального дилатометра Linseis L75VD1600C.

В табл. 1 представлены зафиксированные в температурном интервале -140…70°С значения, а на фиг. 1 - зависимость ТКЛР сплава от степени холодной деформации. В табл. 2 приведены механические свойства сплава после холодной деформации со степенью 8%.

Как видно из приведенных данных, в результате предложенной термомеханической обработки достигается значительное снижение ТКЛР (вплоть до отрицательных значений) при сохранении высокой прочности (более 900 МПа) и удовлетворительной пластичности (порядка 5%).

Источники информации

1. Прецизионные сплавы. Справочник. М.: 1984, с. 212…258.

2. Неферромагнитный инварный сплав и изделие, выполненное из него (их варианты): пат. 2095455 Рос. Федерация. №96114190/02; заявл. 16.07.1996; опубл. 10.11.1997.

3. Хромова Л.П. Повышение качества изделий точного машиностроения на основе разработки инварного титанового сплава: автореф. дис. канд. техн. наук. - Москва, 2005. - 28 с.

Способ термомеханической обработки прутков из двухфазных титановых сплавов с молибденовым эквивалентом от 3,3 до 22%, включающий закалку прутка и его холодную деформацию, отличающийся тем, что перед закалкой пруток подвергают горячей деформации при температуре в диапазоне от 500°C до Т-20°C с обеспечением аксиальной текстуры β-фазы <110> с полюсной плотностью не менее трех, закалку прутка осуществляют с температур в диапазоне от 720°C до Т с последующей холодной деформацией вдоль оси прутка при температуре не выше 300°C и с относительным удлинением от 1 до 30%, где Т - температура полиморфного превращения сплава.
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ПРУТКОВ ИЗ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ ДЛЯ ПОЛУЧЕНИЯ НИЗКИХ ЗНАЧЕНИЙ ТЕРМИЧЕСКОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ В НАПРАВЛЕНИИ ОСИ ПРУТКА
Источник поступления информации: Роспатент

Показаны записи 111-111 из 111.
31.07.2019
№219.017.ba79

Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации

Изобретение относится к области радиолокации с частотной манипуляцией непрерывного излучения (ЧМНИ) радиоволн и может быть использовано для обнаружения движущихся целей, измерения расстояния до объекта локации, скорости и направления движения. Достигаемый технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002695799
Дата охранного документа: 29.07.2019
Показаны записи 161-170 из 170.
04.12.2018
№218.016.a31e

Способ производства пористых имплантатов на основе металлических материалов

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником...
Тип: Изобретение
Номер охранного документа: 0002673795
Дата охранного документа: 30.11.2018
19.04.2019
№219.017.341a

Способ изготовления фольги из интерметаллидных ортосплавов на основе титана

Изобретение предназначено для повышения качества фольги, изготавливаемой холодной прокаткой из сплавов на основе алюминидов титана, основанных на орторомбической фазе TiAlNb. Способ включает производство слитков или порошковых заготовок. Они подвергаются горячей термомеханической обработке, в...
Тип: Изобретение
Номер охранного документа: 0002465973
Дата охранного документа: 10.11.2012
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
31.05.2019
№219.017.706b

Пористая структура для медицинских имплантатов

Изобретение относится к области медицины, конкретно к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно из титановых сплавов. Описан медицинский имплантат, имеющий пористую структуру, которая содержит набор сфер, соединенных между собой по границам...
Тип: Изобретение
Номер охранного документа: 0002689794
Дата охранного документа: 29.05.2019
27.06.2019
№219.017.92ec

Способ оценки степени интеграции остеозамещающих материалов

Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по...
Тип: Изобретение
Номер охранного документа: 0002692668
Дата охранного документа: 25.06.2019
07.09.2019
№219.017.c8f1

Способ обработки пористых имплантатов на основе металлических материалов

Изобретение относится к изготовлению пористых материалов, в частности имплантатов, предпочтительно из титановых сплавов. Способ обработки пористых имплантатов на основе металлических материалов включает подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на...
Тип: Изобретение
Номер охранного документа: 0002699337
Дата охранного документа: 04.09.2019
13.12.2019
№219.017.ece2

Ячеистая структура имплантатов

Изобретение относится к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно, из титановых сплавов. Ячеистая структура имплантатов выполнена в виде объемной решетки с расположением узлов на поверхности пространственных фигур, соединенных перемычками....
Тип: Изобретение
Номер охранного документа: 0002708871
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed63

Ячеистая структура имплантата

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и предназначено для использования при изготовлении, с помощью аддитивных технологий, имплантатов предпочтительно из титановых сплавов. Выполняют имплантат, имеющий ячеистую структуру. Ячеистая структура имплантата...
Тип: Изобретение
Номер охранного документа: 0002708781
Дата охранного документа: 11.12.2019
24.01.2020
№220.017.f989

Имплантат для остеотомии

Изобретение относится к области медицины, а именно к травматологии и ортопедии. Имплантат для остеотомии выполнен из металла или сплава и имеет форму призмы с основанием в виде прямоугольного треугольника, содержащего длинный и короткий катеты и гипотенузу. При этом призма содержит совокупность...
Тип: Изобретение
Номер охранного документа: 0002711753
Дата охранного документа: 21.01.2020
12.07.2020
№220.018.3210

Имплантат для замещения костных трабекулярных дефектов

Изобретение относится к области медицины, а именно к оперативной травматологии и ортопедии, и раскрывает имплантат для замещения костных трабекулярных дефектов, выполненный в виде тела вращения. Имплантат характеризуется тем, что тело вращения выполнено из пористого материала, выбранного из...
Тип: Изобретение
Номер охранного документа: 0002726253
Дата охранного документа: 10.07.2020
+ добавить свой РИД