×
26.08.2017
217.015.df09

Результат интеллектуальной деятельности: ГОЛОГРАФИЧЕСКИЙ СПОСОБ ИЗУЧЕНИЯ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ

Вид РИД

Изобретение

Аннотация: Голографический способ изучения нестационарных процессов, в котором используют когерентный источник излучения, коллиматор и первый, второй и третий светоделители, а также зеркала, при помощи которых формируют три опорных и один объектный пучки. В процессе реализации способа указанные три опорных пучка могут быть перекрыты экранами, что обеспечивает возможность последовательного во времени формирования голограмм. Технический результат заключается в обеспечении возможности изучения нестационарных процессов на разных стадиях их развития, не вмешиваясь в их физико-химические явления, что повышает точность измерений параметров исследуемого процесса. 2 ил.

Изобретение относится к оптическому приборостроению и может быть использовано в энергетических установках для изучения нестационарных процессов распыливания топлива и количественного изучения структуры и дисперсности топливного факела, в гидродинамике для изучения массообмена между твердой фазой и жидкой средой при создании новых химических технологий, в механике высокоскоростного разрушения твердых материалов при их сквозном разрушении и определении при этом пространственного распределения частиц в образующемся двухфазном потоке «твердые частицы - газ» и в других аналогичных областях.

Известен голографический способ (см. Черных В.Т., Черных Г.С., Борисов А. Н., Тукшаитов Р.Х. Патент полезной модели №123136 от 20.12.2012 г. Бюл. №35, 2012 г.), реализованный устройством, в котором первый объектный пучок Wоб1 и первый опорный пучок Wоп1 формируют с помощью первого светоделителя и коллиматоров, установленных в этих пучках.

Известен также голографический способ (см. Черных В.Т., Черных Г.С. Патент полезной модели №140575 от 09.04.2014 г. Бюл. №13, 2014 г.), реализованный устройством, в котором первый объектный и первый опорный пучки формируют посредством коллиматора и светоделительного элемента, установленного после коллиматора под углом к оптической оси.

Наиболее близким решением является голографический способ (см. Черных В.Т., Белозеров А.Ф. Авторское свидетельство №469882 от 14.01.1975 г. Бюл. №17 1975 г. - прототип), реализованный устройством, в котором посредством источника когерентного излучения, светоделительной пластины и оптической системы формируют первый объектный Wоб1 и первый опорный Wоп1 пучки.

Недостатком известных голографических способов является ограниченные технологические возможности при количественном измерении тонкой пространственной структуры нестационарного процесса, поскольку за время одного эксперимента не представляется возможным фиксировать изменения процесса в разные моменты времени. За счет этого вносится существенная погрешность в голографические измерения параметров нестационарного процесса.

Однако на практике существует целый ряд задач, предусматривающих изучение нестационарных объектов, слабо изменяющихся во времени, и реальное решение их требует создания голографических способов, позволяющих за время одного эксперимента получать серию голографических интерферограмм, соответствующих разным моментам времени развития нестационарного процесса.

Задачей предлагаемого изобретения является разработка голографического способа изучения нестационарных процессов, в котором устранен основной недостаток аналогов и прототипа.

Техническим результатом является расширение технологической возможности голографического способа при изучении нестационарных процессов за счет обеспечения возможности получения голографических интерферограмм, соответствующих разным временным стадиям развития единого процесса и повышения за счет этого точности измерения параметров объекта.

Технический результат достигается тем, что в голографическом способе изучения нестационарных процессов, согласно которому при использовании когерентного источника излучения, коллиматора и первого светоделителя формируют первый объектный пучок Wоб1 и первый опорный пучок Wоп1, в котором устанавливают первое отражательное зеркало, отличающийся тем, что в первый опорный пучок Wоп1 дополнительно устанавливают второй и третий светоделители, второе и третье отражательные зеркала, первый, второй и третий непрозрачные экраны, при этом второй и третий светоделители, формирующие второй Wоп2, третий Wоп3 и четвертый Wоп4 опорные пучки, устанавливают в первом опорном пучке Wоп1, между первым светоделителем и первым отражательным зеркалом, под углом к оптической оси первого опорного пучка Wоп1, а второе и третье отражательные зеркала устанавливают между вторым и третьим светоделителями и узлом регистрации голограммы, с возможностью последовательного наложения опорных пучков Wоп2, Wоп3 и Wоп4 на объектный пучок Wоб1 в плоскости узла регистрации голограммы, при этом первый, второй и третий непрозрачные экраны устанавливают соответственно, во втором Wоп2, третьем Wоп3 и четвертом Wоп4 опорных пучках с возможностью их ввода-вывода из рабочего положения.

В голографическом способе вдоль оптической оси первого опорного пучка Wоп1 устанавливают более двух светоделительных элементов.

Сущность предлагаемого изобретения поясняется чертежами, на которых представлена принципиальная схема оптической системы для реализации голографического способа (фиг. 1) и схема восстановления волновых фронтов с голограммы (фиг. 2).

Цифрами на чертеже (фиг. 1) обозначены:

1 - лазер (когерентный источник излучения),

2 - отрицательная линза коллиматора;

3 - объектив коллиматора;

4 - первый светоделительный элемент;

5 - рабочая зона;

6 - проекционный объектив;

7 - узел регистрации голограммы;

8 - второй светоделительный элемент;

9 - второе отражательное зеркало;

10 - третий светоделительный элемент;

11 - третье отражательное зеркало;

12 - первое отражательное зеркало;

13, 14, 15 - первый второй, и третий непрозрачные экраны, соответственно.

Цифрами на чертеже (фиг. 2)обозначены:

16 - восстанавливающий пучок Wв;

17 - голограмма;

18 - голографическая интерферограмма, соответствующая моменту времени t1;

19 - голографическая интерферограмма, соответствующая моменту времени t2;

20 - голографическая интерферограмма, соответствующая моменту времени t3.

Оптическая система содержит оптически связанные лазер 1, коллиматор, состоящий из отрицательной линзы 2 и объектива 3, первый светоделительный элемент 4 для образования первого опорного пучка и первого объектного пучка, рабочую зону 5, проекционный объектив 6, узел 7 регистрации голограммы, второй светоделительный элемент 8 и второе отражательное зеркало 9 для формирования второго опорного пучка, третий светоделительный элемент 10 и третье отражательное зеркало 11 для формирования третьего опорного пучка, первое отражательное зеркало 12 для формирования четвертого опорного пучка, непрозрачные экраны 13, 14, 15, установленные во втором, третьем и четвертом опорных пучках, соответственно.

Отличием предлагаемого голографического способа является то, что систему светоделительных элементов в виде второго 8 и третьего 10 устанавливают в первой опорной ветви Wоп1.

Систему светоделительных элементов в виде второго 8 и третьего 10 устанавливают под углом к оптической оси первой опорной ветви Wоп1.

Между вторым 8 и третьим 10 светоделительными элементами и узлом 7 регистрации голограммы устанавливают отражательные зеркала 9 и 11.

Во второй, третьей и четвертой опорных ветвях устанавливают непрозрачные экраны 13, 14, 15 с возможностью их ввода - вывода из рабочего положения.

Суть голографического способа изучения нестационарных процессов заключается в следующем.

Когерентное излучение от лазера 1 поступает в коллиматор, состоящий из отрицательной линзы 2 и объектива 3, на выходе которого формируют пучок параллельных световых лучей. Далее этот пучок падает на первый светоделитель 4, посредством которого делится на первый опорный пучок Wоп1 и первый объектный пучок Wоб1. Первый объектный пучок Wоб1 далее проходит сквозь рабочую зону 5, проекционный объектив 6 и достигает узла 7 регистрации голограммы. Проекционный объектив 6 сопрягает плоскость рабочей зоны 5 с плоскостью узла 7 регистрации голограммы.

За счет этого достигают четких границ изображения исследуемого объекта, что весьма важно при анализе микроструктуры объекта, каким, например, является диффузионный пограничный слой.

Отраженный от первого светоделителя 4 световой пучок Wоп1 падает на второй светоделитель 8 и, отразившись от него, служит вторым опорным пучком Wоп2. С помощью второго отражательного зеркала 9 пучок Wоп2 направляют под углом θ1 на узел 7 регистрации голограммы, где он налагается на первый объектный пучок Wоб1.

Пучок, прошедший сквозь второй светоделительный элемент 8, достигает третьего светоделителя 10 и, отразившись от него, выполняет роль третьего опорного пучка Wоп3, который направляют под углом θ2 в плоскость узла 7 регистрации голограммы, где он налагается на первый объектный пучок Wоб1.

Световой пучок, прошедший сквозь светоделительный элемент 10, служит четвертым опорным пучком Wоп4. С помощью первого отражательного зеркала 12 пучок Wоп4 направляют под углом θ3 в плоскость узла 7 регистрации голограммы, где он налагается на первый объектный пучок Wоб1.

В каждом опорном пучке Wоп2, Wоп3, и Wоп4 устанавливают перпендикулярно к оптическим осям непрозрачные экраны 13, 14 и 15 соответственно. В рабочем положении экраны 13, 14 и 15 выводятся из опорных пучков Wоп2, Wоп3, и Wоп4.

Голограмму нестационарного процесса регистрируют двухэкспозиционным методом.

Во время первых трех экспозиций, разделенных во времени, исследуемый объект в рабочей зоне 5 отсутствует.

При первой экспозиции в плоскости узла 7 регистрации голограммы интерферируют только первый объектный пучок Wоб1 и второй опорный пучок Wоп2. При этом непрозрачный экран 13 выведен из второго опорного пучка Wоп2, а в опорных пучках Wоп3, и Wоп4 введены непрозрачные экраны 14 и 15. После записи первой голограммы в опорный пучок Wоп2 вводят непрозрачный экран 13.

Далее из третьего опорного пучка Wоп3 выводят экран 14. При этом в опорные пучки Wоп2 и Wоп4 введены экраны 13 и 15. В плоскости регистрации 7 записывают голограмму при суперпозиции пучков Wоб1 и Wоп3. После экспозиции в опорный пучок Wоп3 вводят экран 14.

Для записи третьей голограммы из четвертого опорного пучка Wоп4 выводят непрозрачный экран 15. При этом в опорные пучки Wоп2 и Wоп3 введены непрозрачные экраны 13 и 14. В плоскости узла 7 регистрируют голограмму при интерференции первого объектного пучка Wоб1 и четвертого опорного пучка Wоп4. После экспозиции в четвертый опорный пучок Wоп4 вводят непрозрачный экран 15.

Далее в рабочую зону 5 устанавливают объект исследования, являющийся нестационарным процессом, например, изучают набухание гранул каучука, активированных каким-либо металлом, в толуоле.

Вторую экспозицию выполняют также в три этапа, с теми же опорными пучками Wоп2, Wоп3 и Wоп4, но при этом первый объектный пучок Wоб1 будет уже соответствовать трем стадиям развития нестационарного процесса и объектные пучки, прошедшие сквозь него, можно представить в виде трех объектных пучков: W'об2, W''об3 и W'''об4. Каждый из этих пучков будет характеризоваться своими фазовыми изменениями, вносимыми исследуемым процессом в моменты времени t2 и t3.

При записи первой объектной голограммы в плоскости узла 7 регистрации будут интерферировать второй опорный пучок Wоп2 и объектный пучок W'об2. Причем пучок W'об2 характеризует состояние процесса на стадии его развития в момент времени t1.

При записи второй объектной голограммы будут интерферировать третий опорный пучок Wоп3 и объектный пучок W''об3. Деформация волнового фронта W''об3 будет соответствовать состоянию процесса в момент времени t2.

При регистрации третьей объектной голограммы будут интерферировать четвертый опорный пучок Wоп4 и объектный пучок W'''об4. Деформация волнового фронта объектного пучка W'''об4 будет определяться состоянием нестационарного процесса в момент времени t3 от его начала.

После выполнения двух этапов, на каждом из которых выполняют запись трех голограмм без объекта исследования и с объектом в рабочей зоне 5, регистрирующая среда узла 7 подвергается фотохимической обработке. Полученная голограмма используется для восстановления волновых фронтов - получения голографических интерферограмм нестационарного процесса.

Восстановление волновых фронтов с голограммы изображено на фиг. 2. Голограмму 17 просвечивают коллимированным световым пучком Wв 16, падающим по нормали к ее поверхности. В направлениях дифрагированных углов θ, θ, и θ восстанавливаются эталонные пучки Wоп2, Wоп3 и Wоп4 и объектные пучки W'об2, W''об3, W'''об4. При суперпозиции этих волновых фронтов образуются голографические интерферограммы 18, 19 и 20. Каждая из интерференционных картин характеризует развитие нестационарного процесса в разные моменты времени t1, t2 и t3 от начала его возникновения. В случае, если требуется регистрация голограмм развивающегося процесса и в последующие моменты времени, то вдоль оптической оси первого опорного пучка Wоп1 устанавливают более двух светоделительных элементов.

Таким образом, предлагаемый голографический способ позволяет изучать нестационарные процессы, не вмешиваясь в их физико-химические явления, что расширяет его технологические возможности и повышает точность измерений параметров исследуемого процесса, а также упрощает интерпретацию экспериментальных результатов.

Голографический способ изучения нестационарных процессов, согласно которому при использовании когерентного источника излучения, коллиматора и первого светоделителя формируют первый объектный пучок W и первый опорный пучок W, в котором устанавливают первое отражательное зеркало, отличающийся тем, что в первый опорный пучок W дополнительно устанавливают второй и третий светоделители, второе и третье отражательные зеркала, первый, второй и третий непрозрачные экраны, при этом второй и третий светоделители, формирующие второй W, третий W и четвертый W опорные пучки, устанавливают в первом опорном пучке W, между первым светоделителем и первым отражательным зеркалом, под углом к оптической оси первого опорного пучка W, а второе и третье отражательные зеркала устанавливают между вторым и третьим светоделителями и узлом регистрации голограммы, с возможностью последовательного наложения опорных пучков W, W и W на объектный пучок W в плоскости узла регистрации голограммы, при этом первый, второй и третий непрозрачные экраны устанавливают соответственно во втором W, третьем W и четвертом W опорных пучках с возможностью их ввода-вывода из рабочего положения.
ГОЛОГРАФИЧЕСКИЙ СПОСОБ ИЗУЧЕНИЯ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ
ГОЛОГРАФИЧЕСКИЙ СПОСОБ ИЗУЧЕНИЯ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ
ГОЛОГРАФИЧЕСКИЙ СПОСОБ ИЗУЧЕНИЯ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 58.
20.02.2019
№219.016.bc3d

Адаптивное цифровое прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в расширении функциональных возможностей путем увеличения времени прогноза в два раза. Для этого в блоке прогноза цифрового...
Тип: Изобретение
Номер охранного документа: 0002680215
Дата охранного документа: 18.02.2019
20.02.2019
№219.016.bc40

Цифровое прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в расширении функциональных возможностей путем увеличения времени прогноза в четыре раза. Для этого блок прогноза цифрового...
Тип: Изобретение
Номер охранного документа: 0002680217
Дата охранного документа: 18.02.2019
08.03.2019
№219.016.d3da

Котельная установка

Изобретение относится к области производства тепловой энергии на ТЭС в виде перегретого пара путем камерного сжигания топлива в топке котла при помощи горелочных устройств. Оно может быть использовано также в металлургической теплотехнике для регулирования температурного распределения факела...
Тип: Изобретение
Номер охранного документа: 0002681111
Дата охранного документа: 04.03.2019
08.03.2019
№219.016.d425

Силовая станция

Изобретение относится к области конструкций устройств для физической тренировки мышц человека в условиях временных и пространственных ограничений, а также в условиях необходимости длительного суточного выполнения работниками функциональных обязанностей, связанных с обслуживанием...
Тип: Изобретение
Номер охранного документа: 0002681101
Дата охранного документа: 04.03.2019
14.03.2019
№219.016.df1c

Система оптимизации работы группы нефтегазовых скважин

Изобретение относится к нефтедобывающей промышленности, в частности к области контроля параметров скважинной жидкости (СКЖ) в системе оптимизации работы группы скважин путем управления установками электроцентробежных насосов (УЭЦН) на кусте нефтегазовых скважин по данным условий эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002681738
Дата охранного документа: 12.03.2019
18.05.2019
№219.017.5399

Способ определения места дугового короткого замыкания локационным методом

Изобретение относится к электротехнике и предназначено для реализации в устройствах определения места повреждения линий электропередачи (ЛЭП), в устройствах контроля погасания дуги ЛЭП, измерительных органах дистанционной защиты. Технический результат: повышение точности определения места...
Тип: Изобретение
Номер охранного документа: 0002687841
Дата охранного документа: 16.05.2019
26.05.2019
№219.017.618c

Многофункциональная автоматическая цифровая интеллектуальная скважина

Изобретение относится к нефтедобывающей промышленности, в частности к области контроля параметров скважинной жидкости (СКЖ) и управления в системе оптимизации работы скважин с установками электроцентробежных насосов (УЭЦН) по данным условий эксплуатации скважины и параметров СКЖ. Техническим...
Тип: Изобретение
Номер охранного документа: 0002689103
Дата охранного документа: 23.05.2019
31.05.2019
№219.017.7103

Способ получения адсорбента

Изобретение относится к способам получения адсорбента на основе цеолитсодержащей породы. Предложен способ получения адсорбента для хроматографического разделения фурфурола и фурфурилового спирта. Цеолитсодержащую породу размалывают до порошкообразного состояния, отсеивают фракции размером от 20...
Тип: Изобретение
Номер охранного документа: 0002689625
Дата охранного документа: 28.05.2019
13.06.2019
№219.017.8118

Способ очистки высокоминерализованных кислых сточных вод водоподготовительной установки от сульфатов

Изобретение может быть использовано в области водоподготовки в тепловой энергетике и промышленности для очистки высокоминерализованных кислых сточных вод от сульфатов. Способ включает обработку щелочным кальцийсодержащим реагентом, при этом одновременно дозируют нейтральную водорастворимую...
Тип: Изобретение
Номер охранного документа: 0002691052
Дата охранного документа: 07.06.2019
27.07.2019
№219.017.b9f8

Централизованная микропроцессорная система релейной защиты, автоматики и сигнализации с дистанционным управлением

Изобретение относится к электротехнике, а именно к технике релейной защиты, автоматики и сигнализации. Техническим результатом является упрощение развертывания, масштабируемости, а также повышение скорости передачи информации в распределительных устройствах (РУ) электроэнергетических установок...
Тип: Изобретение
Номер охранного документа: 0002695634
Дата охранного документа: 25.07.2019
Показаны записи 21-21 из 21.
04.04.2018
№218.016.3418

Способ обнаружения гололедно-изморозевых отложений на проводах и грозозащитных тросах линий электропередачи

Использование: в области электротехники. Технический результат - обеспечение обнаружения наличия гололедно-изморозевых отложений и определение толщины стенки, плотности и погонной массы гололедно-изморозевых отложений на проводах и грозозащитных тросах линий электропередачи. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002645755
Дата охранного документа: 28.02.2018
+ добавить свой РИД