×
26.08.2017
217.015.deb5

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОННОГО ОБЕЗГАЖИВАНИЯ МИКРОКАНАЛЬНОЙ ПЛАСТИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптико-электронному приборостроению, в частности к технологии обезгаживания микроканальных пластин (МКП), и может быть использовано для повышения качества электронно-оптических преобразователей, фотоэлектронных умножителей и детекторов на основе МКП. Технический результат - снижение газосодержания и газовыделения в МКП, в том числе в начальной по длине части каналов, до уровня требований фотоэлектронных приборов нового поколения с долговечностью 15000 ч и более, а также уменьшение времени обезгаживания МКП. В способе электронного обезгаживания микроканальной пластины на МКП подают импульсное или постоянное напряжение и в течение заданного времени электронный поток направляют от входа к выходу МКП, после чего меняют полярность напряжения питания между входом и выходом МКП и электронный поток направляют от выхода к входу МКП, по истечении заданного времени операции повторяются до полного обезгаживания МКП с одновременным повышением напряжения на МКП и выходного тока МКП до значений, не ухудшающих параметры МКП. 1 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к оптико-электронному приборостроению, в частности к технологии обезгаживания микроканальных пластин (МКП), и может быть использовано для повышения качества электронно-оптических преобразователей, фотоэлектронных умножителей и детекторов на основе МКП.

Уровень техники

Известен способ электронного обезгаживания МКП, включающий подачу на МКП высоковольтных импульсов наносекундной длительности, прикладывая отрицательный потенциал к входной поверхности пластины или положительный к выходной поверхности [патент РФ №2304821, МПК6 H01J 9/12. Способ обезгаживания микроканальной пластины, опубл. 2007 г.]. При обезгаживании амплитуду импульсов повышают до 20 кВ. Количество импульсов и продолжительность обезгаживания определяют по максимальному значению и скорости изменения во времени постоянного тока, протекающего в ускоряющем промежутке после окончания импульсного воздействия.

Недостатками данного способа является недостаточное обезгаживание пластин в начальной части каналов, что снижает качество и надежность прибора, в котором установлена МКП, и необходимость использования генератора высоковольтных наносекундных импульсов.

Наиболее близким к предлагаемому техническому решению является способ, включающий подачу напряжения постоянного тока на МКП и пропускание через нее тока, величину которого повышают до 3 мкА в течение 3 часов, выдерживают на этом уровне в течение 20 часов и снижают до нуля в течение часа [Кесаев С.А., Сергеев И.Н., Молоканов О.А., Кармоков A.M., Пергаменцев Ю.Л., Попугаев А.Б. Влияние режимов термического обезгаживания и электронной тренировки на усиление МКП // Тезисы IV Международной конференции «Химия твердого тела и современные микро- и нанотехнологии». Кисловодск-Ставрополь: СевКавГТУ, 2004, с. 127-130. ISBN 5-9296-0157-7].

Недостатками прототипа являются высокое остаточное газосодержание МКП в начальной части каналов и длительность процесса обезгаживания. В процессе изготовления фотоэлектронного прибора при электронном обезгаживании МКП для увеличения скорости газовыделения увеличивают ток падающего на входную поверхность МКП пучка электронов. Однако увеличение входного тока ограничено значениями, при которых происходит разрушение структуры материала МКП и необратимые изменения усилительных свойств МКП. Увеличивая число МКП в составе прибора, необходимо уменьшать величину входного тока при электронном обезгаживании, чтобы усиленный поток электронов не вывел из строя микроканальные пластины. В таком случае для полного обезгаживания всех МКП необходимо значительно увеличивать время обработки, что может привести к нежелательному дополнительному снижению коэффициента вторичной эмиссии у выхода каналов МКП или в последней МКП полностью, если используется сборка из двух или трех МКП. Кроме того, повышение времени обезгаживания лимитирует производительность оборудования. При сокращении времени обезгаживания начальные (по длине) части каналов МКП (или целиком первая пластина, если используется сборка из двух или трех МКП) останутся недотренированными и сохранят высокое остаточное газосодержание.

Техническим результатом является снижение газосодержания и газовыделения в МКП, в том числе в начальной (по длине) части каналов, до уровня требований фотоэлектронных приборов нового поколения с долговечностью 15000 ч и более, а также уменьшение времени обезгаживания МКП.

Раскрытие изобретения

Технический результат достигается тем, что в способе электронного обезгаживания микроканальной пластины на МКП подают импульсное или постоянное напряжение и в течение заданного времени электронный поток направляют от входа к выходу МКП, после чего меняют полярность напряжения питания между входом и выходом МКП и электронный поток направляют от выхода к входу МКП, по истечении заданного времени операции повторяются до полного обезгаживания МКП с одновременным повышением напряжения на МКП и выходного тока МКП до значений, не ухудшающих параметры МКП.

Краткое описание чертежей

Сущность способа поясняется фиг. 1, на которой схематично изображен процесс электронного обезгаживания МКП в прямом направлении, и фиг. 2, на которой показан процесс электронного обезгаживания МКП в обратном направлении, где 1 - электронная пушка, 2 - первая анодная сетка, 3 - микроканальная пластина, 4 - вторая анодная сетка, 5 - электронная пушка.

Осуществление изобретения

При прямом направлении электронного обезгаживания (фиг. 1) на электронную пушку 1 подается отрицательный относительно входа микроканальной пластины 3 потенциал UП1 (от 20 до 250 В). На первую анодную сетку 2 подается такой потенциал UС1, который не будет вносить искажений в электрическое поле между электронной пушкой 1 и МКП 3. Вход МКП 3 заземлен. К выходу МКП 3 прикладывается положительное напряжение UМКП ВЫХ (от 400 до 900 B, возможно увеличение напряжения до значения, не ухудшающего параметры МКП). На вторую анодную сетку 4 подается положительный потенциал UС2, значительно превышающий UМКП ВЫХ (до 6 кВ). Электронная пушка 5 отключена. Поток электронов с электронной пушки 1, проходя через первую анодную сетку 2, попадает на микроканальную пластину 3, где происходит его усиление. С выхода МКП 3 электронный поток попадает на вторую анодную сетку 4, к которой подключен измерительный прибор для контроля выходного тока. Ток с выхода МКП 3 должен поддерживаться на заданном уровне (обычно от 2 до 7 мкА, возможно увеличение тока до значения, не ухудшающего параметры МКП). По истечении заданного времени (от 15 сек до 4 ч) направление электронного обезгаживания МКП 3 меняется на противоположное (фиг. 2). При этом меняются потенциалы на микроканальной пластине 3, на электронную пушку 5 подается отрицательный относительно выхода микроканальной пластины 3 потенциал UП2 (от 20 до 250 B). На вторую анодную сетку 4 подается такой потенциал UС2, который не будет вносить искажений в электрическое поле между электронной пушкой 5 и МКП 3. К входу МКП 3 прикладывается положительное напряжение UМКП ВЫХ (от 400 до 900 В, возможно увеличение напряжения до значения, не ухудшающего параметры МКП). Выход МКП 3 заземлен. На первую анодную сетку 2 подается положительный потенциал UС1, значительно превышающий UМКП ВЫХ (до 6 кВ). Электронная пушка 1 отключена. Поток электронов с электронной пушки 5, проходя через вторую анодную сетку 4, попадает на микроканальную пластину 3, где происходит его усиление. С МКП 3 электронный поток попадает на первую анодную сетку 2, к которой подключен измерительный прибор для контроля тока. Ток с МКП 3 должен поддерживаться на заданном уровне (обычно от 2 до 7 мкА, возможно увеличение тока до значения, не ухудшающего параметры МКП). По истечении заданного времени (от 15 сек до 4 ч) направление электронного обезгаживания МКП 3 снова меняется на противоположное и т.д. Продолжительность двустороннего электронного обезгаживания микроканальной пластины определяется по интенсивности остаточного газовыделения.

Пример реализации способа

На первом этапе напряжение смещения на электронной пушке 1 составляло минус 200 B, напряжение на первой анодной сетке 2 - минус 20 B, напряжение на выходе МКП составляло 500 B, на вторую анодную сетку 4 подавалось напряжение 1,3 кВ, ток накала электронной пушки 1 подбирался таким, чтобы обеспечить выходной ток в цепи второй анодной сетки ~ 2,0 мкА. В таком режиме выполнялось электронное обезгаживание МКП в прямом направлении в течение 15 мин. По истечении этого времени отключалось питание, выход МКП заземлялся, на вход МКП подавалось напряжение 500 B, на первую анодную сетку 2 подавалось напряжение 1,3 кВ, напряжение смещения на второй электронной пушке 5 составляло минус 200 B, напряжение на второй анодной сетке 4 - минус 20 B, ток накала электронной пушки 2 подбирался таким, чтобы обеспечить выходной ток в цепи первой анодной сетки ~ 2,0 мкА. В таком режиме выполнялось электронное обезгаживание МКП в обратном направлении также в течение 15 мин. Затем данные операции повторялись несколько раз, чтобы общее время обезгаживания МКП при напряжении 500 B и выходном токе ~ 2,0 мкА составляло 2 ч.

На втором этапе напряжение на МКП повышалось до 700 B, выходной ток до 3,3 мкА и при таком режиме в течение 2 ч выполнялось обезгаживание МКП с изменением направления потока электронов каждые 15 мин.

На третьем этапе напряжение на МКП устанавливалось равным 800 B, выходной ток - 6,2 мкА и в течение 2 ч выполнялось обезгаживание МКП с изменением направления потока электронов каждые 15 мин.

Во время выполнения двустороннего электронного обезгаживания МКП постоянно отслеживалась разность давления остаточных газов при отсутствии напряжения на МКП и подаче напряжения на МКП при помощи масс-спектрометра и соответствующего программного обеспечения. По данной разности давления остаточных газов можно было судить об интенсивности остаточного газовыделения микроканальной пластины. По окончании обезгаживания МКП был измерен коэффициент усиления пластины при различных напряжениях на МКП. Полученные результаты показывают, что коэффициент усиления МКП изменяется одинаково как при обычном одностороннем обезгаживании, так и при предлагаемом двустороннем, а интенсивность остаточного газовыделения после двустороннего обезгаживания в 2,39 раза меньше, чем после одностороннего. Время, затраченное на двустороннее обезгаживание, составило 6 ч, а на одностороннее обезгаживание - 8 ч.

Также с использованием предлагаемого способа можно обезгаживать сборку, состоящую из двух или трех микроканальных пластин.

Повышение температуры, при которой выполняется электронное обезгаживание МКП, до 50-400°С также способствует повышению интенсивности газовыделения из каналов МКП, при этом общее время двустороннего электронного обезгаживания МКП дополнительно сокращается до 50%.

Использование предлагаемого способа электронного обезгаживания МКП по сравнению с прототипом позволяет существенного снизить газосодержание и газовыделение МКП до уровня требований фотоэлектронных приборов нового поколения с долговечностью 15000 ч и более, получив при этом требуемое усиление, и уменьшить трудоемкость процесса электронного обезгаживания МКП.


СПОСОБ ЭЛЕКТРОННОГО ОБЕЗГАЖИВАНИЯ МИКРОКАНАЛЬНОЙ ПЛАСТИНЫ
СПОСОБ ЭЛЕКТРОННОГО ОБЕЗГАЖИВАНИЯ МИКРОКАНАЛЬНОЙ ПЛАСТИНЫ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 726.
10.10.2014
№216.012.fc4d

Устройство защиты первичного преобразователя ускорения

Изобретение относится к системам защиты микромеханических систем и предназначено для обеспечения защиты первичных преобразователей ускорения (ППУ) от действия внешних дестабилизирующих факторов (ВДФ). Устройство защиты ППУ содержит корпус, на котором установлено основание, выполненное из двух...
Тип: Изобретение
Номер охранного документа: 0002530435
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc59

Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации

Использование: область анализа газовых сред для определения их компонентного состава и устройства измерительно-аналитических комплексов, с помощью которых они определяются. Задача: разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами...
Тип: Изобретение
Номер охранного документа: 0002530447
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc5d

Способ определения возмущений и биений вертикальной оси опорно-поворотного устройства

Способ включает использование двух автоколлимационных теодолитов и многогранной зеркальной призмы, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения. Теодолиты наводят на грани многогранной призмы так, чтобы их визирные оси были на одном уровне...
Тип: Изобретение
Номер охранного документа: 0002530451
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc65

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для...
Тип: Изобретение
Номер охранного документа: 0002530459
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc66

Анализатор многофазной жидкости

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально...
Тип: Изобретение
Номер охранного документа: 0002530460
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcb6

Способ измерения давления газа в запаянных разрядных камерах плазменного фокуса

Изобретение относится к способам измерения низких давлений газа в газоразрядных камерах, в которых образуется плазменный фокус (ПФ) - нецилиндрический Z-пинч, токовая оболочка которого имеет форму типа воронки, и может быть использовано в таких областях, как мощная импульсная электрофизика,...
Тип: Изобретение
Номер охранного документа: 0002530540
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd59

Фильтр нижних частот

Изобретение относится к информационно-измерительной технике и может быть использовано для выделения квазипостоянных несимметричных сигналов на фоне синфазных напряжений и электромагнитных помех. Технический результат заключается в расширении динамического диапазона частот фильтра нижних частот...
Тип: Изобретение
Номер охранного документа: 0002530703
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.feb5

Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации

Сущность изобретения: в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, согласно предлагаемому способу используют газоанализатор с датчиками, вынесенными наружу и контактирующими с анализируемой многокомпонентной...
Тип: Изобретение
Номер охранного документа: 0002531061
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.00a8

Устройство формирования сильноточных импульсов

Устройство относится к высоковольтной импульсной технике и может быть использовано в ускорителях заряженных частиц и устройствах для формирования сильноточных импульсов. Достигаемый технический результат - повышение стабильности выходного напряжения и надежности работы. Устройство...
Тип: Изобретение
Номер охранного документа: 0002531560
Дата охранного документа: 20.10.2014
Показаны записи 161-170 из 559.
10.10.2014
№216.012.fc4d

Устройство защиты первичного преобразователя ускорения

Изобретение относится к системам защиты микромеханических систем и предназначено для обеспечения защиты первичных преобразователей ускорения (ППУ) от действия внешних дестабилизирующих факторов (ВДФ). Устройство защиты ППУ содержит корпус, на котором установлено основание, выполненное из двух...
Тип: Изобретение
Номер охранного документа: 0002530435
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc59

Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации

Использование: область анализа газовых сред для определения их компонентного состава и устройства измерительно-аналитических комплексов, с помощью которых они определяются. Задача: разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами...
Тип: Изобретение
Номер охранного документа: 0002530447
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc5d

Способ определения возмущений и биений вертикальной оси опорно-поворотного устройства

Способ включает использование двух автоколлимационных теодолитов и многогранной зеркальной призмы, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения. Теодолиты наводят на грани многогранной призмы так, чтобы их визирные оси были на одном уровне...
Тип: Изобретение
Номер охранного документа: 0002530451
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc65

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для...
Тип: Изобретение
Номер охранного документа: 0002530459
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc66

Анализатор многофазной жидкости

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально...
Тип: Изобретение
Номер охранного документа: 0002530460
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcb6

Способ измерения давления газа в запаянных разрядных камерах плазменного фокуса

Изобретение относится к способам измерения низких давлений газа в газоразрядных камерах, в которых образуется плазменный фокус (ПФ) - нецилиндрический Z-пинч, токовая оболочка которого имеет форму типа воронки, и может быть использовано в таких областях, как мощная импульсная электрофизика,...
Тип: Изобретение
Номер охранного документа: 0002530540
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd59

Фильтр нижних частот

Изобретение относится к информационно-измерительной технике и может быть использовано для выделения квазипостоянных несимметричных сигналов на фоне синфазных напряжений и электромагнитных помех. Технический результат заключается в расширении динамического диапазона частот фильтра нижних частот...
Тип: Изобретение
Номер охранного документа: 0002530703
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.feb5

Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации

Сущность изобретения: в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, согласно предлагаемому способу используют газоанализатор с датчиками, вынесенными наружу и контактирующими с анализируемой многокомпонентной...
Тип: Изобретение
Номер охранного документа: 0002531061
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.00a8

Устройство формирования сильноточных импульсов

Устройство относится к высоковольтной импульсной технике и может быть использовано в ускорителях заряженных частиц и устройствах для формирования сильноточных импульсов. Достигаемый технический результат - повышение стабильности выходного напряжения и надежности работы. Устройство...
Тип: Изобретение
Номер охранного документа: 0002531560
Дата охранного документа: 20.10.2014
+ добавить свой РИД