×
26.08.2017
217.015.dead

Результат интеллектуальной деятельности: УСТРОЙСТВО ТУРБОГЕНЕРАТОРА ТРЕХФАЗНЫХ ТОКОВ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ

Вид РИД

Изобретение

№ охранного документа
0002624772
Дата охранного документа
06.07.2017
Аннотация: Изобретение относится к области электротехники, в частности к электрическим синхронным турбогенераторам переменного трехфазного тока с электромагнитным возбуждением, предназначенным для генерации напряжений двух различных частот. Технический результат - снижение расчетной полной мощности преобразующих устройств, их общей массы и габаритов. Предложенный турбогенератор содержит ферромагнитный шихтованный статор, включающий две распределенные трехфазные обмотки переменного трехфазного тока повышенной частоты и промышленной частоты =50 Гц с числом пар полюсов соответственно p и p, причём p>p, и вращающийся ферромагнитный ротор. Ротор состоит из двух частей, на наружных поверхностях которых в пазах размещены две распределенные обмотки возбуждения. Обмотка возбуждения постоянного тока с числом пар полюсов p подключена к выходу устройства бесщеточного возбуждения. Трехфазная обмотка возбуждения переменного тока с числом пар полюсов р подключена через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты. 1 ил.

1.1. Область техники

Изобретение относится к области электротехники, в частности к электрическим синхронным турбогенераторам переменного трехфазного тока с электромагнитным возбуждением и с дополнительными обмотками как на статоре, так и на роторе для генерации напряжений двух различных частот.

1.2. Уровень техники

Известен турбогенератор трехфазного тока с электромагнитным возбуждением, состоящий из шихтованного магнитопровода (статора) с цилиндрической расточкой и пазами на внутренней ее поверхности, в которых размещена распределенная обмотка переменного трехфазного тока и из ферромагнитного ротора, насаженного на вал, опирающийся своими концами на подшипники, один из концов которого соединен с приводным двигателем (турбиной) [1].

В пазах ферромагнитного ротора неявнополюсной конструкции уложена обмотка возбуждения постоянного тока, которая электрически соединена с вращающимся выпрямителем устройства бесщеточного возбуждения, жестко закрепленного на конце вала [2]. Питание обмотки возбуждения постоянного тока осуществляется электроэнергией устройства бесщеточного возбуждения при вращении ротора от приводного двигателя.

В указанном турбогенераторе при вращении ротора в результате взаимодействия магнитного поля вращающейся обмотки возбуждения постоянного тока с обмоткой статора в ней индуктируется переменная трехфазная электродвижущая сила (э.д.с), которая в дальнейшем при подключении к внешней сети должна синхронизироваться по величине, частоте и фазе с напряжением внешней сети.

Величину первой (основной) гармоники э.д.с. Е1 и ее частоту в общем случае определяют по формулам [1]:

,

где:

- W - число витков в фазе обмотки статора;

- Ф1 - первая гармоника потокосцепления фазы обмотки статора, Вб;

- kоб.1 _ обмоточный коэффициент;

- kс.1 - коэффициент скоса пазов;

- - частота переменной э.д.с, Гц;

- p1 - число пар полюсов обмотки статора и ротора;

- n1 - частота вращения ротора, об/мин.

В соответствии с формулой (2) трехфазное напряжение промышленной частоты 50 Гц на выходе синхронного турбогенератора при p1=1 индуктируется при максимально возможной частота вращения ротора n1=3000 об/мин.

Известно, что паровые (газовые) турбины, являющиеся приводными двигателями для турбогенератора, имеют наилучшие технико-экономические показатели (удельный расход топлива, к.п.д., удельная мощность и др.) при более высоких частотах вращения n≥6000 об/мин [3].

Недостатком данного технического решения турбогенератора переменного напряжения промышленной частоты 50 Гц является то, что для его привода используют промежуточный механический редуктор [3], что приводит к увеличению массы, габаритов и стоимости всего турбоагрегата в целом.

Другим близким по технической сущности к заявляемому устройству является техническое решение, используемое в электромашинном преобразователе частоты с фазным ротором [1], в котором при вращении ротора от приводного двигателя, в т.ч. при более высокой частоте вращения, и при подаче со стороны ротора трехфазного напряжения одной частоты можно получать со стороны статора трехфазное напряжение другой частоты, в т.ч. промышленной частоты 50 Гц.

Указанное техническое решение [1] нашло реализацию в способе и устройстве управления автономным асинхронным генератором [4] (аналог), в цепи трехфазной обмотки ротора которого используют регулируемый преобразователь частоты. При изменяющейся, например, при увеличении частоты вращения приводного двигателя неизменность частоты и амплитуды индуктируемой э.д.с. в трехфазной обмотке статора поддерживают путем соответствующего регулирования в сторону уменьшения частоты и амплитуды трехфазного тока на выходе упомянутого преобразователя частоты.

Недостатком данного технического решения является отсутствие возможности генерации переменных трехфазных напряжений двух различных частот.

Наиболее близким по технической реализации к заявляемому устройству является техническое решение главного турбогенератора повышенной частоты (200 Гц и более) в составе судовой единой электроэнергетической системы (ЕЭЭС) [5], вращение которого осуществляют непосредственно от турбины при частоте вращения n≥6000 об/мин (прототип).

Однако в указанном прототипе отсутствует возможность генерации переменного трехфазного напряжения промышленной частоты 50 Гц, необходимого для питания общесудовых потребителей. Для питания общесудовых потребителей трехфазным током промышленной частоты 50 Гц в составе судовой ЕЭЭС [5] используют преобразующие устройства, а именно каскадные матричные преобразователи частоты (КМПЧ) с параллельным соединением каскадов в составе централизованной системы отбора мощности (СОМ), которая в свою очередь питается от главных турбогенераторов повышенной частоты. Причем полная мощность указанных КМПЧ должна быть не менее суммы полных мощностей упомянутых потребителей с учетом их возможных перегрузок, что является причиной увеличения массы, габаритов и стоимости всей ЕЭЭС в целом, несмотря на использование повышенной частоты.

Задачей предложенного технического решения является обеспечение существенного снижения расчетной полной мощности необходимых преобразующих устройств, их общей массы и габаритов в составе судовой ЕЭЭС.

Технический результат предложенного устройства турбогенератора трехфазных токов двух различных частот состоит в том, что при использовании способа [6], наряду с генерацией электроэнергии двух различных частот - повышенной частоты 200 Гц и промышленной частоты 50 Гц - одновременно обеспечивают снижение расчетной полной мощности необходимых преобразующих устройств ориентировочно на 50% от суммы полных мощностей всех общесудовых потребителей промышленной частоты с учетом их возможных перегрузок.

Указанный технический результат достигается тем, что в предложенном устройстве турбогенератора трехфазных токов двух различных частот (повышенной и промышленной ), содержащем ферромагнитный шихтованный статор с цилиндрический расточкой, на внутренней поверхности которой в общих пазах размещены две распределенные трехфазные обмотки переменного трехфазного тока повышенной частоты f1 и промышленной частоты fs=50 Гц - основная и дополнительная - с числом пар полюсов соответственно p1 и p2 при соблюдении условия p1>p2, и вращающийся ферромагнитный ротор неявнополюсной конструкции, состоящий из двух частей, насаженных на общий вал и расположенных внутри расточки статора, на наружных поверхностях которых в пазах размещены две распределенные обмотки возбуждения, причем на основной части ротора размещена обмотка возбуждения постоянного тока с числом пар полюсов p1, подключенная к выходу устройства бесщеточного возбуждения, предусмотрены следующие отличия:

1. В пазы неявнополюсной конструкции второй дополнительной части ротора (шихтованного) вводят трехфазную обмотку возбуждения переменного тока с числом пар полюсов p2, размещенную на дополнительной части ротора (шихтованного) и подключенную через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты. Угловую частоту вращения основной волны намагничивающей силы трехфазной обмотки возбуждения, размещенной в пазах дополнительной части ротора, поддерживают всегда ниже и в противоположном направлении угловой частоты вращения ротора, т.е. поддерживают асинхронный режим с отрицательной частотой скольжения . Указанный режим позволяет по сравнению с КМПЧ в составе централизованной СОМ прототипа [5] существенно уменьшить расчетную полную мощность обратимого преобразователя частоты, следовательно, его общую массу и габариты.

2. Для реализации в турбогенераторе асинхронного режима с отрицательной частотой скольжения в качестве обратимого преобразователя частоты используют каскадный матричный преобразователь частоты, входные клеммы каждого каскада которого соединяют через выключатели и согласующий трансформатор с внешней сетью повышенной частоты аналогично КМПЧ в составе централизованной СОМ прототипа [5].

1.3. Краткое описание чертежей

Предложенное устройство поясняется чертежом, на котором изображена блок-схема (фиг. 1) построения турбогенератора трехфазных токов двух различных частот, реализующего способ генерации переменных напряжений [6].

В представленной блок-схеме (фиг. 1) используют следующие обозначения:

1 - статор;

1.1 - основная трехфазная обмотка;

1.2 - дополнительная трехфазная обмотка;

2 - трансформатор;

3 - выключатели;

4 - обратимый каскадный матричный преобразователь частоты (КМПЧ);

4.1 - трехфазные входы;

4.2 - трехфазный выход;

5 - выключатель;

6 - внешняя сеть повышенной частоты;

7 - выключатель;

8 - внешняя сеть промышленной частоты;

9 - основная часть ротора;

10 - дополнительная часть ротора;

11 - приводной двигатель (турбина);

12 - обмотка возбуждения постоянного тока;

13 - трехфазная обмотка возбуждения;

14 - устройство бесщеточного возбуждения.

1.4. Раскрытие изобретения

Предложенное техническое решение заключается в том, что в конструкцию ферромагнитного ротора, расположенного внутри расточки статора, введена дополнительная часть с размещенной в ее пазах трехфазной обмоткой возбуждения, а также введена дополнительная трехфазная обмотка на статоре, число пар полюсов которой отличается от числа пар полюсов основных обмоток, расположенных на статоре и на основной части ротора. Причем в цепь трехфазной обмотки возбуждения, размещенной на дополнительной части ротора, подключается обратимый КМПЧ, расчетная полная мощность которого существенно меньше (ориентировочно на 50%) КМПЧ в составе централизованной СОМ, используемой в прототипе [5].

Турбогенератор трехфазных токов двух различных частот имеет ферромагнитный шихтованный статор 1 с цилиндрической расточкой и пазами на внутренней ее поверхности, в которых наряду с основной трехфазной обмоткой 1.1 напряжения повышенной частоты размещают дополнительную трехфазную обмотку 1.2 напряжения промышленной частоты, распределенную в общих пазах (фиг. 1).

Основную обмотку 1.1, предназначенную для генерации переменного трехфазного напряжения, в т.ч. высоковольтного, повышенной частоты и имеющую число пар полюсов p1=2, соединяют через согласующий трансформатор 2 и выключатели 3 с трехфазными входами 4.1 каждого каскада обратимого КМПЧ 4, а также через выключатель 5 соединяют с внешней сетью 6 повышенной частоты.

Дополнительную трехфазную обмотку 1.2, предназначенную для генерации переменного трехфазного напряжения промышленной частоты и имеющую число пар полюсов p2=1, соединяют через выключатель 7 с внешней сетью 8 промышленной частоты 50 Гц.

Внутри расточки статора 1 располагают цилиндрический ротор из ферромагнитного материала, состоящий из основной 9 и дополнительной 10 частей неявнополюсной конструкции, насаженных на общий вал, опирающийся своими концами на подшипники (на рис. не показано), один из концов которого соединяют непосредственно с приводным двигателем (турбиной) 11.

На наружной поверхности каждой части ротора имеются пазы. В пазах основной части ротора 9 размещают распределенную обмотку возбуждения постоянного тока 12 с числом пар полюсов p1=2, а в пазах дополнительной части ротора 10 (шихтованного) размещают распределенную трехфазную обмотку возбуждения 13 с числом пар полюсов p2=1.

Обмотку возбуждения постоянного тока 12 электрически соединяют с выходом устройства бесщеточного возбуждения 14, расположенного на одном из концов вала. Трехфазную обмотку возбуждения 13 электрически соединяют с тремя контактными кольцами, расположенными и жестко закрепленными на другом конце вала (на рис. не показано).

Контактные кольца посредством трех неподвижных электрических щеток (на рис. не показано) пофазно соединяют с трехфазным выходом 4.2 обратимого каскадного матричного преобразователя частоты (КМПЧ) 4, обладающего возможностью регулирования амплитуды и частоты выходного тока.

Устройство турбогенератора трехфазных токов двух различных частот по предложенному техническому решению работает следующим образом.

Предварительно приводным двигателем (турбиной) 11 производят пуск и разгон турбогенератора до частоты вращения и осуществляют подключение цепи электропитания обмотки возбуждения постоянного тока 12 к устройству бесщеточного возбуждения 14.

В результате взаимодействия магнитного поля вращающейся обмотки возбуждения постоянного тока 12 с основной трехфазной обмоткой 1.1 статора 1 в последней возникает переменное трехфазное напряжение повышенной частоты , которое через согласующий трансформатор 2 и выключатели 3 поступает на трехфазные входы 4.1 каждого каскада обратимого КМПЧ 4.

Обратимый КМПЧ 4 преобразует переменное трехфазное напряжение повышенной частоты в трехфазное напряжение промышленной частоты , которое при плавном увеличении его амплитуды и частоты от нуля до номинального значения через трехфазный выход 4.2, электрические щетки и контактные кольца поступает в трехфазную обмотку возбуждения 13 дополнительной части ротора 10.

Далее намагничивающие токи, возникающие в трехфазной обмотке возбуждения 13, создают пространственную основную волну (гармонику) намагничивающей силы [1] на дополнительной части ротора 10, угловая частота вращения которой направлена в противоположную сторону относительно направления вращения обеих частей ротора 9 и 10.

Причем в предложенном устройстве турбогенератора трехфазных токов двух различных частот используют асинхронный режим с отрицательной частотой скольжения по способу [6], в соответствии с которым угловую частоту вращения основной волны намагничивающей силы трехфазной обмотки возбуждения 13 поддерживают всегда ниже угловой частоты вращения обеих частей ротора 9 и 10.

С целью исключения взаимного электромагнитного влияния обеих обмоток, расположенных как в общих пазах статора 1.1; 1.2, так и на обеих частях ротора 12; 13, их числа пар полюсов должны в соответствии со способом [6] удовлетворять условию p1>p2.

В результате взаимодействия суммарного магнитного поля от двух вращающихся обмоток возбуждения 12 и 13 с основной 1.1 и дополнительной 1.2 обмотками статора 1 в них индуктируются переменные трехфазные э.д.с. вращения:

- с частотой - в основной обмотке 1.1;

- с частотой скольжения - в дополнительной обмотке 1.2 (знак - «минус» характеризует передачу электроэнергии в сеть).

Затем генерируемая электроэнергия в упомянутых обмотках 1.1; 1.2 статора 1 в виде трехфазных токов двух различных частот ; через выключатели 5; 7 после их синхронизации по частоте и напряжению поступает во внешние сети 6; 8 переменного напряжения соответствующей частоты.

Кроме того, в период пуска и разгона турбогенератора до угловой частоты вращения ω1 и после перевода его в асинхронный режим с отрицательной частотой скольжения в трехфазной обмотке возбуждения 13, расположенной на дополнительной части ротора 10, индуктируется переменная противо-э.д.с. с частотой . Под действием этой противо-э.д.с. электроэнергия трехфазных токов через контактные кольца и щетки поступает на трехфазный выход 4.2 обратимого КМПЧ 4.

Указанная электроэнергия после обратного преобразования в трехфазный ток с частотой поступает на трехфазные входы 4.1 каждого каскада обратимого КМПЧ 4 и через выключатели 3, согласующий трансформатор 2 и выключатель 5 после синхронизации по частоте и напряжению передается во внешнюю сеть 6 повышенной частоты .

Расчетная полная мощность предложенного устройства турбогенератора определяется как сумма полных мощностей, потребляемых внешними сетями как от основной (Росн) обмотки 1.1 статора 1, так и от дополнительной (Pдоп) обмотки 1.2. Причем последняя Рдоп обычно определяется как сумма полных мощностей всех общесудовых потребителей во внешней сети промышленной частоты 8 с учетом их возможных перегрузок.

Расчетная полная мощность Р2 трехфазной обмотки возбуждения 13 дополнительной части ротора 10, а также равная ей расчетная полная мощность обратимого КМПЧ 4 определяется в соответствии с [1] по формуле:

,

где: - скольжение дополнительной части ротора 10 в относительных единицах (знак - «минус» характеризует передачу электроэнергии в сеть).

Таким образом, предложенное техническое решение устройства турбогенератора трехфазных токов двух различных частот имеет необходимое обоснование и наряду с расширением функциональных возможностей прототипа по способу [6] обеспечивает при частоте вращения ротора n1=6000 об/мин заявленный технический результат, т.е. существенное снижение (на ~50%) расчетной полной мощности, следовательно, общей массы и габаритов необходимых преобразующих устройств (обратимого КМПЧ) в составе судовой ЕЭЭС.

Литература

1. Вольдек А.И. Электрические машины. М.: Энергия, 1978. - С. 366; 375; 593.

2. Яковлев Г.С. Судовые электроэнергетические системы. Л.: Судостроение, 1987. - С. 61.

3. Турбогенераторы блочные типа ТГ. Продукция ОАО «Калужский турбинный завод»; интернет: www.oaoktz.ru.

4. Способ управления автономным асинхронным генератором. Мещеряков В.Н., Иванов А.Б., Куликов А.И. Патент РФ 2213409, кл. H02P 9/00 от 26.04.2001.

5. Судовая электроэнергетическая система переменного напряжения повышенной частоты с системой электродвижения и матричными преобразователями частоты. Александров В.П., Скворцов Б.А., Хомяк В.А. Патент РФ № RU 2510781 С2, кл. H02J 3/34 от 17.07.2012.

6. Способ генерации переменных напряжений двух различных частот в турбогенераторе трехфазного тока. Скворцов Б.А. Заявка на изобретение №2015132456 кл. H02P 9/00 от 04.08.2015 г.

Устройство турбогенератора трехфазных токов двух различных частот, содержащее ферромагнитный шихтованный статор с цилиндрический расточкой, на внутренней поверхности которой в общих пазах размещены две распределенных трехфазные обмотки переменного трехфазного тока повышенной частоты и промышленной частоты =50 Гц с числом пар полюсов соответственно p и p при соблюдении условия p>p, и вращающийся ферромагнитный ротор неявнополюсной конструкции, состоящий из двух частей, насаженных на общий вал и расположенных внутри расточки статора, на наружных поверхностях которых в пазах размещены две распределенные обмотки возбуждения, причем на основной части ротора размещена обмотка возбуждения постоянного тока с числом пар полюсов p, подключенная к выходу устройства бесщеточного возбуждения, отличающееся тем, что введена трехфазная обмотка возбуждения переменного тока с числом пар полюсов р, размещенная на дополнительной части ротора (шихтованного), подключенная через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты, а также в качестве обратимого преобразователя частоты введен каскадный матричный преобразователь частоты, входные клеммы каждого каскада которого соединяют через выключатели и согласующий трансформатор с внешней сетью повышенной частоты .
УСТРОЙСТВО ТУРБОГЕНЕРАТОРА ТРЕХФАЗНЫХ ТОКОВ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ
УСТРОЙСТВО ТУРБОГЕНЕРАТОРА ТРЕХФАЗНЫХ ТОКОВ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 387.
20.06.2018
№218.016.6475

Резиновая смесь

Изобретение относится к резиновой смеси на основе каучуков общего назначения с наполнением техническим углеродом разной активности и может быть использовано для внутренней дополнительной опоры, монтируемой в грузовую шину, для обеспечения частичного или полного сохранения движения при...
Тип: Изобретение
Номер охранного документа: 0002658040
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.6781

Обтекатель

Изобретение относится к судостроению. Обтекатель содержит удобообтекаемый крыловидный профиль. При этом кормовая часть профиля выполнена в виде периодически чередующихся вдоль обтекателя элементов (1) с несимметричными относительно продольной оси поперечными сечениями с одной острой кромкой...
Тип: Изобретение
Номер охранного документа: 0002658489
Дата охранного документа: 21.06.2018
01.07.2018
№218.016.6963

Корпус мощной гибридной свч интегральной схемы

Изобретение относится к электронной технике и может быть использовано при изготовлении мощных гибридных СВЧ интегральных схем повышенной надежности, герметизируемых шовно-роликовой или лазерной сваркой. Техническим результатом изобретения является обеспечение герметизации корпуса...
Тип: Изобретение
Номер охранного документа: 0002659304
Дата охранного документа: 29.06.2018
10.07.2018
№218.016.6ee5

Способ изготовления ротора шарового гироскопа

Изобретение относится к области точного приборостроения и может быть использовано при изготовлении роторов шаровых гироскопов, в частности криогенного гироскопа. Согласно изобретению формообразование заготовки ротора осуществляют посредством изготовления сферы диаметром, большим, чем конечный...
Тип: Изобретение
Номер охранного документа: 0002660756
Дата охранного документа: 09.07.2018
18.07.2018
№218.016.71a1

Имитатор ракет

Изобретение относится к информационно-измерительным устройствам и может быть использовано для имитации предполетных функций ракеты, проверки электрического и информационного взаимодействия ракеты с аппаратурой носителя при помощи имитатора ракет. Имитатор ракет содержит модуль отображения...
Тип: Изобретение
Номер охранного документа: 0002661414
Дата охранного документа: 16.07.2018
02.08.2018
№218.016.77a7

Конденсатор с регулированием потока охлаждающей среды

Изобретение относится к области энергетики и может быть использовано при создании паротурбинных установок (ППУ) атомных судов. Конденсатор с регулированием потока охлаждающей среды выполнен одноходовым и состоит из корпуса, теплообменных трубок, внутри которых движется охлаждающая среда,...
Тип: Изобретение
Номер охранного документа: 0002662748
Дата охранного документа: 30.07.2018
17.08.2018
№218.016.7ca3

Рукав-компенсатор угловой

Изобретение относится к трубопроводным системам различного назначения, в частности к гибким рукавам-компенсаторам, предназначенным для использования в гидравлических системах для транспортирования по трубопроводам жидких сред в условиях избыточного давления и вакуума. Рукав-компенсатор угловой...
Тип: Изобретение
Номер охранного документа: 0002663968
Дата охранного документа: 13.08.2018
19.08.2018
№218.016.7e08

Способ наведения летательного аппарата на наземные цели по данным радиолокатора с синтезированием апертуры антенны

Изобретение относится к области навигационного приборостроения и может найти применение в системах самонаведения, в частности самонаведения летательного аппарата (ЛА) на наземные цели с помощью радиолокатора, использующего синтезированные апертуры антенны либо доплеровское обужение диаграммы...
Тип: Изобретение
Номер охранного документа: 0002664258
Дата охранного документа: 15.08.2018
23.08.2018
№218.016.7e80

Способ ремонта несущих трехслойных панелей из полимерных композиционных материалов

Изобретение относится к области пластмассового судостроения и касается вопроса ремонта несущих трехслойных панелей из полимерных композиционных материалов (ПКМ) со средним слоем из пенопласта. Предложен способ ремонта несущих трехслойных панелей из ПКМ со средним слоем из пенопласта, который...
Тип: Изобретение
Номер охранного документа: 0002664620
Дата охранного документа: 21.08.2018
30.08.2018
№218.016.8158

Способ контроля толщины покрытия в процессе его химического осаждения на деталь

Изобретение относится к технологиям нанесения покрытий на детали и может быть использовано для контроля толщины покрытия в процессе его химического осаждения на детали. Способ заключается в том, что в раствор ванны с погруженной в него деталью погружают контрольный образец, имеющий известную...
Тип: Изобретение
Номер охранного документа: 0002665356
Дата охранного документа: 29.08.2018
Показаны записи 281-290 из 297.
20.01.2018
№218.016.168c

Подводный компрессор с прямым электроприводом

Изобретение относится к системе компрессора, приспособленной к подводному применению. Подводный компрессор с прямым электроприводом содержит компрессорный агрегат и двигательный агрегат, роторная часть которого и вращающиеся части компрессорного агрегата расположены на общем валу, установленном...
Тип: Изобретение
Номер охранного документа: 0002635173
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.18ae

Способ генерации переменных напряжений двух различных частот в турбогенераторе трехфазного тока

Изобретение относится к области электротехники и может быть использовано в электрических турбогенераторах переменного трехфазного тока с электромагнитным возбуждением и с дополнительными трехфазными обмотками на статоре и на роторе для генерации напряжений двух различных частот. Техническим...
Тип: Изобретение
Номер охранного документа: 0002636053
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.196b

Полупогружная двигательно-движительная установка

Изобретение относится к области морской подводной техники, а именно к конструкциям двигательно-движительных установок (ДДУ) подводных аппаратов. Полупогружная двигательно-движительная установка (ДДУ) содержит ротор, статор, разделитель сред, корпус и движитель. Движитель соединен...
Тип: Изобретение
Номер охранного документа: 0002636246
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.1a13

Двигательно-движительная установка подводного аппарата

Изобретение относится к области морской подводной техники, а именно к конструкциям двигательно-движительных установок подводных аппаратов. Двигательно-движительная установка подводного аппарата содержит высокоскоростной электродвигатель, редуктор, узел уплотнения и движитель. В качестве...
Тип: Изобретение
Номер охранного документа: 0002636429
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.2481

Интегральный аттенюатор

Использование: для создания схем дифференциальных аттенюаторов для работы в СВЧ диапазоне. Сущность изобретения заключается в том, что интегральный аттенюатор содержит генератор дифференциального сигнала, звенья, состоящие из параллельно включенных управляемых МОП транзисторов n- и p-типа, блок...
Тип: Изобретение
Номер охранного документа: 0002642538
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e56

Криогенный гироскоп

Использование: для производства криогенных гироскопов со сферическим ротором. Сущность изобретения заключается в том, что криогенный гироскоп содержит герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему...
Тип: Изобретение
Номер охранного документа: 0002643942
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.30d7

Мобильная лаборатория для испытаний на электромагнитные воздействия

Изобретение относится к устройствам для испытаний на стойкость к воздействию электромагнитного поля. Мобильная лаборатория для испытаний на электромагнитные воздействия выполнена в форм-факторе микроавтобуса, салон которого разделен перегородкой в виде электромагнитного экрана, отделяющего...
Тип: Изобретение
Номер охранного документа: 0002644988
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3332

Система регенерации гипоксической газовоздушной среды с повышенным содержанием аргона для обитаемых герметизированных объектов

Изобретение относится к средствам обеспечения обитаемости и пожаробезопасности подводных лодок, глубоководных обитаемых аппаратов и других средств освоения мирового океана, автономных космических объектов и других герметичных обитаемых объектов. Минимизация рисков возгораний и развития пожаров...
Тип: Изобретение
Номер охранного документа: 0002645508
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.34c9

Рыбопромысловое судно ледового плавания

Изобретение относится к области судостроения и касается вопроса эксплуатации рыбопромыслового судна в тяжелых ледовых условиях. Предложено рыбопромысловое судно ледового плавания, включающее корпус с ледовыми обводами и ледовым усилением, размещенные в отсеках балластные цистерны с балластной...
Тип: Изобретение
Номер охранного документа: 0002646042
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.34cf

Способ изготовления образца сотового заполнителя для испытаний

Изобретение относится к способам изготовления образцов для испытаний и может применяться при аттестации сотовых структур в области кораблестроения, авиастроения и космической техники. Изготавливают два одинаковых блока сотового заполнителя и приклеивают их торцевыми поверхностями к...
Тип: Изобретение
Номер охранного документа: 0002646082
Дата охранного документа: 01.03.2018
+ добавить свой РИД