×
26.08.2017
217.015.dead

Результат интеллектуальной деятельности: УСТРОЙСТВО ТУРБОГЕНЕРАТОРА ТРЕХФАЗНЫХ ТОКОВ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ

Вид РИД

Изобретение

№ охранного документа
0002624772
Дата охранного документа
06.07.2017
Аннотация: Изобретение относится к области электротехники, в частности к электрическим синхронным турбогенераторам переменного трехфазного тока с электромагнитным возбуждением, предназначенным для генерации напряжений двух различных частот. Технический результат - снижение расчетной полной мощности преобразующих устройств, их общей массы и габаритов. Предложенный турбогенератор содержит ферромагнитный шихтованный статор, включающий две распределенные трехфазные обмотки переменного трехфазного тока повышенной частоты и промышленной частоты =50 Гц с числом пар полюсов соответственно p и p, причём p>p, и вращающийся ферромагнитный ротор. Ротор состоит из двух частей, на наружных поверхностях которых в пазах размещены две распределенные обмотки возбуждения. Обмотка возбуждения постоянного тока с числом пар полюсов p подключена к выходу устройства бесщеточного возбуждения. Трехфазная обмотка возбуждения переменного тока с числом пар полюсов р подключена через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты. 1 ил.

1.1. Область техники

Изобретение относится к области электротехники, в частности к электрическим синхронным турбогенераторам переменного трехфазного тока с электромагнитным возбуждением и с дополнительными обмотками как на статоре, так и на роторе для генерации напряжений двух различных частот.

1.2. Уровень техники

Известен турбогенератор трехфазного тока с электромагнитным возбуждением, состоящий из шихтованного магнитопровода (статора) с цилиндрической расточкой и пазами на внутренней ее поверхности, в которых размещена распределенная обмотка переменного трехфазного тока и из ферромагнитного ротора, насаженного на вал, опирающийся своими концами на подшипники, один из концов которого соединен с приводным двигателем (турбиной) [1].

В пазах ферромагнитного ротора неявнополюсной конструкции уложена обмотка возбуждения постоянного тока, которая электрически соединена с вращающимся выпрямителем устройства бесщеточного возбуждения, жестко закрепленного на конце вала [2]. Питание обмотки возбуждения постоянного тока осуществляется электроэнергией устройства бесщеточного возбуждения при вращении ротора от приводного двигателя.

В указанном турбогенераторе при вращении ротора в результате взаимодействия магнитного поля вращающейся обмотки возбуждения постоянного тока с обмоткой статора в ней индуктируется переменная трехфазная электродвижущая сила (э.д.с), которая в дальнейшем при подключении к внешней сети должна синхронизироваться по величине, частоте и фазе с напряжением внешней сети.

Величину первой (основной) гармоники э.д.с. Е1 и ее частоту в общем случае определяют по формулам [1]:

,

где:

- W - число витков в фазе обмотки статора;

- Ф1 - первая гармоника потокосцепления фазы обмотки статора, Вб;

- kоб.1 _ обмоточный коэффициент;

- kс.1 - коэффициент скоса пазов;

- - частота переменной э.д.с, Гц;

- p1 - число пар полюсов обмотки статора и ротора;

- n1 - частота вращения ротора, об/мин.

В соответствии с формулой (2) трехфазное напряжение промышленной частоты 50 Гц на выходе синхронного турбогенератора при p1=1 индуктируется при максимально возможной частота вращения ротора n1=3000 об/мин.

Известно, что паровые (газовые) турбины, являющиеся приводными двигателями для турбогенератора, имеют наилучшие технико-экономические показатели (удельный расход топлива, к.п.д., удельная мощность и др.) при более высоких частотах вращения n≥6000 об/мин [3].

Недостатком данного технического решения турбогенератора переменного напряжения промышленной частоты 50 Гц является то, что для его привода используют промежуточный механический редуктор [3], что приводит к увеличению массы, габаритов и стоимости всего турбоагрегата в целом.

Другим близким по технической сущности к заявляемому устройству является техническое решение, используемое в электромашинном преобразователе частоты с фазным ротором [1], в котором при вращении ротора от приводного двигателя, в т.ч. при более высокой частоте вращения, и при подаче со стороны ротора трехфазного напряжения одной частоты можно получать со стороны статора трехфазное напряжение другой частоты, в т.ч. промышленной частоты 50 Гц.

Указанное техническое решение [1] нашло реализацию в способе и устройстве управления автономным асинхронным генератором [4] (аналог), в цепи трехфазной обмотки ротора которого используют регулируемый преобразователь частоты. При изменяющейся, например, при увеличении частоты вращения приводного двигателя неизменность частоты и амплитуды индуктируемой э.д.с. в трехфазной обмотке статора поддерживают путем соответствующего регулирования в сторону уменьшения частоты и амплитуды трехфазного тока на выходе упомянутого преобразователя частоты.

Недостатком данного технического решения является отсутствие возможности генерации переменных трехфазных напряжений двух различных частот.

Наиболее близким по технической реализации к заявляемому устройству является техническое решение главного турбогенератора повышенной частоты (200 Гц и более) в составе судовой единой электроэнергетической системы (ЕЭЭС) [5], вращение которого осуществляют непосредственно от турбины при частоте вращения n≥6000 об/мин (прототип).

Однако в указанном прототипе отсутствует возможность генерации переменного трехфазного напряжения промышленной частоты 50 Гц, необходимого для питания общесудовых потребителей. Для питания общесудовых потребителей трехфазным током промышленной частоты 50 Гц в составе судовой ЕЭЭС [5] используют преобразующие устройства, а именно каскадные матричные преобразователи частоты (КМПЧ) с параллельным соединением каскадов в составе централизованной системы отбора мощности (СОМ), которая в свою очередь питается от главных турбогенераторов повышенной частоты. Причем полная мощность указанных КМПЧ должна быть не менее суммы полных мощностей упомянутых потребителей с учетом их возможных перегрузок, что является причиной увеличения массы, габаритов и стоимости всей ЕЭЭС в целом, несмотря на использование повышенной частоты.

Задачей предложенного технического решения является обеспечение существенного снижения расчетной полной мощности необходимых преобразующих устройств, их общей массы и габаритов в составе судовой ЕЭЭС.

Технический результат предложенного устройства турбогенератора трехфазных токов двух различных частот состоит в том, что при использовании способа [6], наряду с генерацией электроэнергии двух различных частот - повышенной частоты 200 Гц и промышленной частоты 50 Гц - одновременно обеспечивают снижение расчетной полной мощности необходимых преобразующих устройств ориентировочно на 50% от суммы полных мощностей всех общесудовых потребителей промышленной частоты с учетом их возможных перегрузок.

Указанный технический результат достигается тем, что в предложенном устройстве турбогенератора трехфазных токов двух различных частот (повышенной и промышленной ), содержащем ферромагнитный шихтованный статор с цилиндрический расточкой, на внутренней поверхности которой в общих пазах размещены две распределенные трехфазные обмотки переменного трехфазного тока повышенной частоты f1 и промышленной частоты fs=50 Гц - основная и дополнительная - с числом пар полюсов соответственно p1 и p2 при соблюдении условия p1>p2, и вращающийся ферромагнитный ротор неявнополюсной конструкции, состоящий из двух частей, насаженных на общий вал и расположенных внутри расточки статора, на наружных поверхностях которых в пазах размещены две распределенные обмотки возбуждения, причем на основной части ротора размещена обмотка возбуждения постоянного тока с числом пар полюсов p1, подключенная к выходу устройства бесщеточного возбуждения, предусмотрены следующие отличия:

1. В пазы неявнополюсной конструкции второй дополнительной части ротора (шихтованного) вводят трехфазную обмотку возбуждения переменного тока с числом пар полюсов p2, размещенную на дополнительной части ротора (шихтованного) и подключенную через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты. Угловую частоту вращения основной волны намагничивающей силы трехфазной обмотки возбуждения, размещенной в пазах дополнительной части ротора, поддерживают всегда ниже и в противоположном направлении угловой частоты вращения ротора, т.е. поддерживают асинхронный режим с отрицательной частотой скольжения . Указанный режим позволяет по сравнению с КМПЧ в составе централизованной СОМ прототипа [5] существенно уменьшить расчетную полную мощность обратимого преобразователя частоты, следовательно, его общую массу и габариты.

2. Для реализации в турбогенераторе асинхронного режима с отрицательной частотой скольжения в качестве обратимого преобразователя частоты используют каскадный матричный преобразователь частоты, входные клеммы каждого каскада которого соединяют через выключатели и согласующий трансформатор с внешней сетью повышенной частоты аналогично КМПЧ в составе централизованной СОМ прототипа [5].

1.3. Краткое описание чертежей

Предложенное устройство поясняется чертежом, на котором изображена блок-схема (фиг. 1) построения турбогенератора трехфазных токов двух различных частот, реализующего способ генерации переменных напряжений [6].

В представленной блок-схеме (фиг. 1) используют следующие обозначения:

1 - статор;

1.1 - основная трехфазная обмотка;

1.2 - дополнительная трехфазная обмотка;

2 - трансформатор;

3 - выключатели;

4 - обратимый каскадный матричный преобразователь частоты (КМПЧ);

4.1 - трехфазные входы;

4.2 - трехфазный выход;

5 - выключатель;

6 - внешняя сеть повышенной частоты;

7 - выключатель;

8 - внешняя сеть промышленной частоты;

9 - основная часть ротора;

10 - дополнительная часть ротора;

11 - приводной двигатель (турбина);

12 - обмотка возбуждения постоянного тока;

13 - трехфазная обмотка возбуждения;

14 - устройство бесщеточного возбуждения.

1.4. Раскрытие изобретения

Предложенное техническое решение заключается в том, что в конструкцию ферромагнитного ротора, расположенного внутри расточки статора, введена дополнительная часть с размещенной в ее пазах трехфазной обмоткой возбуждения, а также введена дополнительная трехфазная обмотка на статоре, число пар полюсов которой отличается от числа пар полюсов основных обмоток, расположенных на статоре и на основной части ротора. Причем в цепь трехфазной обмотки возбуждения, размещенной на дополнительной части ротора, подключается обратимый КМПЧ, расчетная полная мощность которого существенно меньше (ориентировочно на 50%) КМПЧ в составе централизованной СОМ, используемой в прототипе [5].

Турбогенератор трехфазных токов двух различных частот имеет ферромагнитный шихтованный статор 1 с цилиндрической расточкой и пазами на внутренней ее поверхности, в которых наряду с основной трехфазной обмоткой 1.1 напряжения повышенной частоты размещают дополнительную трехфазную обмотку 1.2 напряжения промышленной частоты, распределенную в общих пазах (фиг. 1).

Основную обмотку 1.1, предназначенную для генерации переменного трехфазного напряжения, в т.ч. высоковольтного, повышенной частоты и имеющую число пар полюсов p1=2, соединяют через согласующий трансформатор 2 и выключатели 3 с трехфазными входами 4.1 каждого каскада обратимого КМПЧ 4, а также через выключатель 5 соединяют с внешней сетью 6 повышенной частоты.

Дополнительную трехфазную обмотку 1.2, предназначенную для генерации переменного трехфазного напряжения промышленной частоты и имеющую число пар полюсов p2=1, соединяют через выключатель 7 с внешней сетью 8 промышленной частоты 50 Гц.

Внутри расточки статора 1 располагают цилиндрический ротор из ферромагнитного материала, состоящий из основной 9 и дополнительной 10 частей неявнополюсной конструкции, насаженных на общий вал, опирающийся своими концами на подшипники (на рис. не показано), один из концов которого соединяют непосредственно с приводным двигателем (турбиной) 11.

На наружной поверхности каждой части ротора имеются пазы. В пазах основной части ротора 9 размещают распределенную обмотку возбуждения постоянного тока 12 с числом пар полюсов p1=2, а в пазах дополнительной части ротора 10 (шихтованного) размещают распределенную трехфазную обмотку возбуждения 13 с числом пар полюсов p2=1.

Обмотку возбуждения постоянного тока 12 электрически соединяют с выходом устройства бесщеточного возбуждения 14, расположенного на одном из концов вала. Трехфазную обмотку возбуждения 13 электрически соединяют с тремя контактными кольцами, расположенными и жестко закрепленными на другом конце вала (на рис. не показано).

Контактные кольца посредством трех неподвижных электрических щеток (на рис. не показано) пофазно соединяют с трехфазным выходом 4.2 обратимого каскадного матричного преобразователя частоты (КМПЧ) 4, обладающего возможностью регулирования амплитуды и частоты выходного тока.

Устройство турбогенератора трехфазных токов двух различных частот по предложенному техническому решению работает следующим образом.

Предварительно приводным двигателем (турбиной) 11 производят пуск и разгон турбогенератора до частоты вращения и осуществляют подключение цепи электропитания обмотки возбуждения постоянного тока 12 к устройству бесщеточного возбуждения 14.

В результате взаимодействия магнитного поля вращающейся обмотки возбуждения постоянного тока 12 с основной трехфазной обмоткой 1.1 статора 1 в последней возникает переменное трехфазное напряжение повышенной частоты , которое через согласующий трансформатор 2 и выключатели 3 поступает на трехфазные входы 4.1 каждого каскада обратимого КМПЧ 4.

Обратимый КМПЧ 4 преобразует переменное трехфазное напряжение повышенной частоты в трехфазное напряжение промышленной частоты , которое при плавном увеличении его амплитуды и частоты от нуля до номинального значения через трехфазный выход 4.2, электрические щетки и контактные кольца поступает в трехфазную обмотку возбуждения 13 дополнительной части ротора 10.

Далее намагничивающие токи, возникающие в трехфазной обмотке возбуждения 13, создают пространственную основную волну (гармонику) намагничивающей силы [1] на дополнительной части ротора 10, угловая частота вращения которой направлена в противоположную сторону относительно направления вращения обеих частей ротора 9 и 10.

Причем в предложенном устройстве турбогенератора трехфазных токов двух различных частот используют асинхронный режим с отрицательной частотой скольжения по способу [6], в соответствии с которым угловую частоту вращения основной волны намагничивающей силы трехфазной обмотки возбуждения 13 поддерживают всегда ниже угловой частоты вращения обеих частей ротора 9 и 10.

С целью исключения взаимного электромагнитного влияния обеих обмоток, расположенных как в общих пазах статора 1.1; 1.2, так и на обеих частях ротора 12; 13, их числа пар полюсов должны в соответствии со способом [6] удовлетворять условию p1>p2.

В результате взаимодействия суммарного магнитного поля от двух вращающихся обмоток возбуждения 12 и 13 с основной 1.1 и дополнительной 1.2 обмотками статора 1 в них индуктируются переменные трехфазные э.д.с. вращения:

- с частотой - в основной обмотке 1.1;

- с частотой скольжения - в дополнительной обмотке 1.2 (знак - «минус» характеризует передачу электроэнергии в сеть).

Затем генерируемая электроэнергия в упомянутых обмотках 1.1; 1.2 статора 1 в виде трехфазных токов двух различных частот ; через выключатели 5; 7 после их синхронизации по частоте и напряжению поступает во внешние сети 6; 8 переменного напряжения соответствующей частоты.

Кроме того, в период пуска и разгона турбогенератора до угловой частоты вращения ω1 и после перевода его в асинхронный режим с отрицательной частотой скольжения в трехфазной обмотке возбуждения 13, расположенной на дополнительной части ротора 10, индуктируется переменная противо-э.д.с. с частотой . Под действием этой противо-э.д.с. электроэнергия трехфазных токов через контактные кольца и щетки поступает на трехфазный выход 4.2 обратимого КМПЧ 4.

Указанная электроэнергия после обратного преобразования в трехфазный ток с частотой поступает на трехфазные входы 4.1 каждого каскада обратимого КМПЧ 4 и через выключатели 3, согласующий трансформатор 2 и выключатель 5 после синхронизации по частоте и напряжению передается во внешнюю сеть 6 повышенной частоты .

Расчетная полная мощность предложенного устройства турбогенератора определяется как сумма полных мощностей, потребляемых внешними сетями как от основной (Росн) обмотки 1.1 статора 1, так и от дополнительной (Pдоп) обмотки 1.2. Причем последняя Рдоп обычно определяется как сумма полных мощностей всех общесудовых потребителей во внешней сети промышленной частоты 8 с учетом их возможных перегрузок.

Расчетная полная мощность Р2 трехфазной обмотки возбуждения 13 дополнительной части ротора 10, а также равная ей расчетная полная мощность обратимого КМПЧ 4 определяется в соответствии с [1] по формуле:

,

где: - скольжение дополнительной части ротора 10 в относительных единицах (знак - «минус» характеризует передачу электроэнергии в сеть).

Таким образом, предложенное техническое решение устройства турбогенератора трехфазных токов двух различных частот имеет необходимое обоснование и наряду с расширением функциональных возможностей прототипа по способу [6] обеспечивает при частоте вращения ротора n1=6000 об/мин заявленный технический результат, т.е. существенное снижение (на ~50%) расчетной полной мощности, следовательно, общей массы и габаритов необходимых преобразующих устройств (обратимого КМПЧ) в составе судовой ЕЭЭС.

Литература

1. Вольдек А.И. Электрические машины. М.: Энергия, 1978. - С. 366; 375; 593.

2. Яковлев Г.С. Судовые электроэнергетические системы. Л.: Судостроение, 1987. - С. 61.

3. Турбогенераторы блочные типа ТГ. Продукция ОАО «Калужский турбинный завод»; интернет: www.oaoktz.ru.

4. Способ управления автономным асинхронным генератором. Мещеряков В.Н., Иванов А.Б., Куликов А.И. Патент РФ 2213409, кл. H02P 9/00 от 26.04.2001.

5. Судовая электроэнергетическая система переменного напряжения повышенной частоты с системой электродвижения и матричными преобразователями частоты. Александров В.П., Скворцов Б.А., Хомяк В.А. Патент РФ № RU 2510781 С2, кл. H02J 3/34 от 17.07.2012.

6. Способ генерации переменных напряжений двух различных частот в турбогенераторе трехфазного тока. Скворцов Б.А. Заявка на изобретение №2015132456 кл. H02P 9/00 от 04.08.2015 г.

Устройство турбогенератора трехфазных токов двух различных частот, содержащее ферромагнитный шихтованный статор с цилиндрический расточкой, на внутренней поверхности которой в общих пазах размещены две распределенных трехфазные обмотки переменного трехфазного тока повышенной частоты и промышленной частоты =50 Гц с числом пар полюсов соответственно p и p при соблюдении условия p>p, и вращающийся ферромагнитный ротор неявнополюсной конструкции, состоящий из двух частей, насаженных на общий вал и расположенных внутри расточки статора, на наружных поверхностях которых в пазах размещены две распределенные обмотки возбуждения, причем на основной части ротора размещена обмотка возбуждения постоянного тока с числом пар полюсов p, подключенная к выходу устройства бесщеточного возбуждения, отличающееся тем, что введена трехфазная обмотка возбуждения переменного тока с числом пар полюсов р, размещенная на дополнительной части ротора (шихтованного), подключенная через контактные кольца и щетки к трехфазному выходу обратимого преобразователя частоты, а также в качестве обратимого преобразователя частоты введен каскадный матричный преобразователь частоты, входные клеммы каждого каскада которого соединяют через выключатели и согласующий трансформатор с внешней сетью повышенной частоты .
УСТРОЙСТВО ТУРБОГЕНЕРАТОРА ТРЕХФАЗНЫХ ТОКОВ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ
УСТРОЙСТВО ТУРБОГЕНЕРАТОРА ТРЕХФАЗНЫХ ТОКОВ ДВУХ РАЗЛИЧНЫХ ЧАСТОТ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 387.
20.07.2015
№216.013.62b6

Движительно-рулевое устройство

Изобретение относится к области морской подводной техники, а именно к конструкциям движительно-рулевых устройств подводных аппаратов. Движительно-рулевое устройство содержит гребной винт, который размещен в направляющей насадке. Направляющая насадка представляет собой кольцевое крыло. На...
Тип: Изобретение
Номер охранного документа: 0002556817
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.62ba

Силовая установка подводного аппарата

Изобретение относится к судостроению, а именно к конструкциям силовых установок подводных аппаратов. Силовая установка подводного аппарата содержит высокооборотный электродвигатель переменного тока, который соединен с движителем аппарата через редуктор. Редуктор выполнен одноступенчатым с...
Тип: Изобретение
Номер охранного документа: 0002556821
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6490

Двигательно-движительная установка подводного аппарата

Изобретение относится к судостроению, а именно к конструкциям двигательно-движительных установок подводных аппаратов, работающих на больших глубинах. Двигательно-движительная установка подводного аппарата содержит высокоскоростной электродвигатель, редуктор, магнитную муфту и движитель....
Тип: Изобретение
Номер охранного документа: 0002557291
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.668e

Преобразователь частоты

Настоящее изобретение относится к области электротехники и силовой электроники, в частности к преобразователям электрической энергии, построенным по схеме двухзвенных электрических преобразователей. Технический результат - повышение энергетической эффективности устройства, уменьшение времени...
Тип: Изобретение
Номер охранного документа: 0002557807
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.68e4

Устройство управления приводом ведущих колес транспортного средства с расширенными функциональными возможностями

Изобретение относится к области транспортного машиностроения. Устройство управления приводом ведущих колес транспортного средства с расширенными функциональными возможностями содержит две обратимые электрические машины, два тяговых инвертора, блоки преобразования и накопления энергии, тепловой...
Тип: Изобретение
Номер охранного документа: 0002558405
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69ea

Способ работы двигателя на газообразном топливе

Изобретение относится к двигателестроению, а именно к двигателям, работающим на газообразном топливе, конвертированным из дизельных двигателей. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что при работе двигателя с газовой...
Тип: Изобретение
Номер охранного документа: 0002558667
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6bf5

Несущая конструкции полужесткого дирижабля или вертостата

Изобретение относится к воздухоплаванию. Несущая конструкция полужесткого дирижабля или вертостата содержит центральную туннельную трубу (1) большого диаметра, проходящую вдоль центральной части оболочки по всей ее длине, силовые шпангоуты (2) кольцевой или треугольной формы, предусмотренные в...
Тип: Изобретение
Номер охранного документа: 0002559195
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c5d

Датчик дифференциального давления

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является уменьшение погрешности датчика разности давления....
Тип: Изобретение
Номер охранного документа: 0002559299
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c5e

Датчик давления

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки и техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является повышение надежности и работоспособности...
Тип: Изобретение
Номер охранного документа: 0002559300
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6fd4

Электроэнергетическая установка судна

Изобретение относится к судостроению, в частности к электроэнергетическим установкам судов. Электроэнергетическая установка судна содержит главный первичный тепловой двигатель, редуктор, разобщительную муфту, гребную электрическую машину, гребной винт, электрический преобразователь, главный...
Тип: Изобретение
Номер охранного документа: 0002560198
Дата охранного документа: 20.08.2015
Показаны записи 141-150 из 297.
27.02.2015
№216.013.2c9f

Шлифовальный круг

Изобретение относится к инструментальной промышленности и может быть использовано при изготовлении шлифовальных кругов для операций бесцентрового, круглого и внутреннего шлифования на проход. Шлифовальный круг содержит металлический корпус с рабочей частью, выполненной из нанесенного на...
Тип: Изобретение
Номер охранного документа: 0002542891
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d82

Опускное подводное устройство

Изобретение относится к области подводной техники, в частности к опускным подводным аппаратам, предназначенным для эксплуатации в режиме спуска, подъема и удержания их на определенной глубине при малых скоростях набегающего потока и качке судна-носителя. Опускное подводное устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002543118
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2fde

Теплообменное устройство

Теплообменное устройство содержит элементы в виде спирально навитых труб с чередующимися прямыми и кольцеобразными участками, расположенными напротив друг друга. Элементы внедрены друг в друга кольцеобразными участками. Прямые участки смежных элементов в теплообменном устройстве располагаются с...
Тип: Изобретение
Номер охранного документа: 0002543722
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.30a9

Двигатель внутреннего сгорания

Изобретение может быть использовано в двигателестроении. Двигатель внутреннего сгорания содержит цилиндр с поршнем, впускной и выпускной клапаны (7) и (1), турбокомпрессор (10), канал (8) для прохода воздуха от компрессора (9) турбокомпрессора к впускному клапану (7) и канал (4) для прохода...
Тип: Изобретение
Номер охранного документа: 0002543925
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3121

Система для обеспечения технического обслуживания и ремонта подводных добычных комплексов в ледовых условиях

Изобретение относится к области судостроения, а более конкретно - к техническим средствам для обеспечения технического обслуживания и ремонта подводных добычных комплексов и доставки технологического оборудования с борта надводного обеспечивающего судна на дно акватории, и может быть...
Тип: Изобретение
Номер охранного документа: 0002544045
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.38e0

Способ стабилизации полета экраноплана и экраноплан для реализации этого способа

Изобретение относится к летательным аппаратам на воздушной подушке и касается стабилизации полета экраноплана на всех высотах проявления экранного эффекта. Экраноплан содержит силовую установку, оперение, крыло, оснащенное механизацией задней кромки с осью вращения, расположенной вдоль размаха...
Тип: Изобретение
Номер охранного документа: 0002546048
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3bc0

Подводная обсерватория

Изобретение относится к области геофизики и может быть использовано для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная обсерватория (1) содержит сейсмометр, состоящий из сейсмического и сейсмоакустического модулей, гидрофизический...
Тип: Изобретение
Номер охранного документа: 0002546784
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.45a3

Инфракрасный коллиматорный комплекс

Комплекс предназначен для контроля и измерения параметров тепловизионных приборов. Комплекс содержит объектив, сменную миру, расположенную в фокальной плоскости объектива, фоновый излучатель, расположенный за мирой и снабженный исполнительным элементом, устройство управления, выход которого...
Тип: Изобретение
Номер охранного документа: 0002549331
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.48c6

Смазочная композиция синтетического турбинного масла для паротурбинных установок

Настоящее изобретение относится к смазочной композиции синтетического турбинного масла для паротурбинных установок, которая включает основу, состоящую из смеси базовых компонентов: полиальфаолефинов с вязкостью 5,6-6,1 мм/с при 100°C и триметилолпропанового эфира карбоновых кислот C-C с...
Тип: Изобретение
Номер охранного документа: 0002550137
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a80

Способ создания предварительного напряжения в районе соединения стыкуемых элементов предварительно напряженного железобетонного понтона

Изобретение относится к технологии судостроения, а именно к методам создания предварительного напряжения в районе соединения предварительно напряженных железобетонных элементов на плаву. Предложенный способ создания предварительного напряжения в районе соединения стыкуемых элементов...
Тип: Изобретение
Номер охранного документа: 0002550579
Дата охранного документа: 10.05.2015
+ добавить свой РИД