×
26.08.2017
217.015.de7e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОГО ТОКА СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002624763
Дата охранного документа
06.07.2017
Аннотация: Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла падения (α) солнечного излучения на поверхность СБ. При значении α в заданном диапазоне, определяемом характеристиками оптического защитного покрытия рабочей поверхности СБ и геометрическими параметрами её зоны чувствительности, измеряют текущее значение тока (I) от СБ. Выходной ток СБ определяют по величине I с поправочным коэффициентом, зависящим от α и k - абсолютного показателя преломления защитного покрытия СБ. Технический результат состоит в обеспечении учета влияния преломления и отражения солнечного излучения оптическим защитным покрытием на измеряемый выходной ток СБ. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА) и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Основными электрическими характеристиками СБ являются выходные ток, напряжение и мощность СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).

Недостаток указанного способа определения электрических характеристик СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете проводятся специальные полетные операции - сеансы оценки эффективности СБ, в которых осуществляется измерение фактической величины электрического тока, вырабатываемого фотоэлектрическими преобразователями СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ, при этом текущая эффективность СБ оценивается как отношение получаемых фактических выходных характеристик СБ к их номинальным значениям - проектным или некоторым исходным значениям, например, на момент начала функционирования КА. Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что его сила является переменной величиной, напрямую зависит от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей (ФЭП), при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

Наиболее близким из аналогов, принятым за прототип, является способ определения максимальной выходной мощности солнечных батарей космического аппарата (Патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006), согласно которому разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, измеряют угол между направлением на Солнце и плоскостью орбиты КА, на витках, на которых значение угла, равное 180° за вычетом суммы угла полураствора видимого с КА диска Земли и угла полураствора зоны чувствительности рабочей поверхности СБ, превышает измеренный выше угол, измеряют угол возвышения направления на Солнце над видимым с КА горизонтом Земли, измеряют значения напряжения и тока от СБ и максимальную выходную мощность двусторонних СБ и СБ, имеющих положительную выходную мощность их тыльной поверхности, определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой стороны, определяемые из условия равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности панелей СБ, а максимальную выходную мощность односторонних СБ определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой или тыльной сторон, определяемые из условия равенства или превышения значением угла возвышения направления на Солнце над видимым с КА горизонтом Земли угла полураствора зоны чувствительности рабочей поверхности СБ.

Способ-прототип минимизирует поступление отраженного от Земли излучения на рабочую поверхность панели СБ за счет наведения нормали к рабочей поверхности СБ на Солнце в момент равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности СБ (или превышения первого угла над вторым), чем уменьшается влияние отраженного от Земли излучения на определение максимального выходного тока СБ, по которым оценивается текущая эффективность СБ.

Способ-прототип имеет существенный недостаток - он не предусматривает возможности выполнения оперативной оценки эффективности СБ на фоне выполнения других полетных операций полета КА, когда солнечное излучение может поступать на рабочую поверхность СБ под произвольным углом, в общем случае отличным от прямого.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности оценки текущей эффективности СБ в ходе полета КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении оперативной оценки эффективности СБ по выходному току от СБ с учетом влияния преломления и частичного отражения падающего под углом к нормали рабочей поверхности СБ солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей СБ.

Технический результат достигается тем, что в способе определения выходного тока солнечной батареи космического аппарата, включающем разворот панели солнечной батареи в рабочее положение, в котором рабочая поверхность солнечной батареи освещена Солнцем, и измерение тока от солнечной батареи в моменты, когда уходящее от Земли излучение поступает на панель солнечной батареи с ее нерабочей стороны, дополнительно в моменты нахождения панели солнечной батареи в одном из дискретных положений определяют угол поворота панели солнечной батареи, соответствующий ее текущему дискретному положению, и измеряют вектор направления на Солнце в связанной с космическим аппаратом системе координат, по которым определяют текущее значение α угла падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей солнечной батареи, при значении угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в задаваемом диапазоне, определяемом характеристиками оптического защитного покрытия фотоэлектрических преобразователей солнечной батареи и геометрическими параметрами зоны чувствительности рабочей поверхности солнечной батареи, измеряют текущее значение тока I от солнечной батареи и выходной ток солнечной батареи, соответствующий воздействию солнечного излучения перпендикулярно ее рабочей поверхности, определяют выражением

где , k - абсолютный показатель преломления оптического к защитного покрытия фотоэлектрических преобразователей солнечной батареи.

Суть предлагаемого изобретения поясняется на представленном рисунке, на котором отображена схема освещения СБ солнечным светом с учетом и введены обозначения:

N - нормаль к рабочей поверхности СБ;

S - вектор солнечного излучения;

А - внешняя (лицевая) поверхность (она же поверхность оптического защитного покрытия фотоэлектрических преобразователей) солнечной батареи;

α - угол падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей СБ;

ƒ - максимально допустимое значение угла падения солнечного излучения на поверхность СБ для выполнения оценки текущей эффективности СБ;

В - внешняя (лицевая) поверхность фотоэлектрических преобразователей солнечной батареи;

С - вектор преломленного луча;

θ - угол преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей СБ.

Поясним предложенные в способе действия.

На многих КА, например, на международной космической станции (МКС), система управления положением СБ предусматривает выставку СБ в заданные дискретные положения, фиксированные в связанной с КА системе координат, а поворот СБ между данными положениями выполняется с заданной угловой скоростью вращения СБ. При этом для выполнения различных полетных операций предусмотрены различные режимы управления ориентаций СБ, в том числе режим автоматического наведения (отслеживания) СБ на Солнце и режим выставки СБ в заданное положение (такие положения выбираются из перечня упомянутых заданных дискретных положений СБ, фиксированных в связанной с КА системе координат). При этом в режиме автоматического наведения (отслеживания) СБ на Солнце система управления автоматически выбирает момент начала поворота СБ для перевода СБ из текущего фиксированного положения СБ в последующее.

Таким образом в произвольный текущий момент времени СБ находится или в одном из фиксированных положений (в этом случае оно является текущим дискретным фиксированным положением СБ) или в процессе перехода между двумя дискретными фиксированными положениями. При этом в режиме автоматического наведения (отслеживания) СБ на Солнце моменты нахождения панели СБ в одном из дискретных положений определяются по измерениям положения Солнца путем определения моментов начала и окончания поворотов СБ с учетом логики автоматического управления СБ в данном режиме.

Для решения поставленной задачи в предложенном техническом решении в моменты нахождения панели солнечной батареи в одном из дискретных положений определяют угол поворота панели солнечной батареи, соответствующий ее текущему дискретному положению, измеряют вектор направления на Солнце в связанной с космическим аппаратом системе координат, по которому определяют текущее значение α угла падения солнечного излучения на поверхность солнечной батареи.

Угол α падения солнечного излучения на поверхность СБ определяют как угол между линиями нормали к рабочей поверхности СБ и вектора солнечного излучения.

При значении угла падения солнечного излучения на поверхность солнечной батареи, лежащим в задаваемом диапазоне, определяемом характеристиками оптического защитного покрытия фотоэлектрических преобразователей солнечной батареи и геометрическими параметрами зоны чувствительности рабочей поверхности фотоэлектрических преобразователей солнечной батареи, измеряют текущее значение тока I от солнечной батареи и выходной ток солнечной батареи, соответствующий воздействию солнечного излучения перпендикулярно ее рабочей поверхности, определяют по соотношению

где k - абсолютный показатель преломления оптического защитного покрытия фотоэлектрических преобразователей солнечной батареи.

Влияние оптического защитного покрытия фотоэлектрических преобразователей (фотоэлементов) панели СБ на генерацию тока заключается в том, что оно преломляет и частично отражает солнечное излучение, поступающее на фотоэлементы панели СБ.

Рассмотрим свет, падающий на границу раздела двух сред: космического вакуума и защитного покрытия СБ (обозначаем k - абсолютный показатель преломления оптического защитного покрытия). Часть света отражается от границы раздела сред, а часть света проходит через границу, испытывая преломление. Суммарная энергия отраженного и преломленного луча в точности равна энергии падающего луча, но соотношение интенсивностей этих лучей зависит от разницы показателей преломления сред, угла падения и поляризации падающего луча. Поляризация является параллельной, если вектор электрического поля Е лежит в плоскости падающего луча и нормали к границе раздела сред, в противном случае поляризация является перпендикулярной.

Угол θ преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей СБ определяют как угол между линиями нормали к рабочей поверхности СБ и вектора преломленного луча.

Согласно формуле Френеля угол падения луча α и угол преломления θ связаны уравнением

sin α=k sin θ,

из которого следует соотношение (2).

Отражательная способность границы раздела сред для лучей с параллельной и перпендикулярной поляризацией R// и R и пропускательная способность границы раздела сред для лучей с параллельной и перпендикулярной поляризацией T// и T описывается выражениями (Бусурин В.И., Носов Ю.Р. Волоконно-оптические датчики: физические основы, вопросы расчета и применения, Энергоатомиздат, 1990; Сивухин Д.В. Общий курс физики. Оптика. Наука, 1980, Годжаев Н.М. Оптика, Высшая школа, 1977):

Для луча, падающего нормально к границе раздела, перпендикулярная и параллельная компоненты совпадают и определяются выражениями

Считаем, что СБ освещается естественным солнечным светом, который представляет собой суммарное электромагнитное излучение множества атомов, которые излучают световые волны независимо друг от друга. Поэтому световая волна, излучаемая Солнцем, характеризуется всевозможными равновероятными колебаниями светового вектора. В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов Е - одинаковой (в среднем) интенсивностью излучения каждого из атомов. Тогда средняя пропускательная и отражательная способности границы сред описываются выражениями

Ток IN от СБ под воздействием солнечного излучения перпендикулярно ее рабочей поверхности и текущий ток I от СБ под воздействием солнечного излучения, поступающего в общем случае под произвольным углом к ее рабочей поверхности, с учетом угла падения Солнечного излучения на рабочую поверхность СБ (см. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57) и с учетом вышеописанной пропускательной способности оптического защитного покрытия фотоэлектрических преобразователей СБ связаны соотношениями

Соотношения (7) и (8) эквивалентны, поскольку Т=1-R.

Подставляя (3), (4) в (5) получаем выражение для определения Т

подставляя которое в (7) получаем соотношение (1) для определения IN.

Подставляя (3), (4) в (6), (8) можно получить соотношение для определения IN через определение R:

Соотношение (9) эквивалентно соотношению (1).

Задаваемый диапазон значений угла падения солнечного излучения на поверхность защитного покрытия СБ, в котором измеряют текущее значение тока от СБ и определяют выходной ток СБ, определяют по характеристикам оптического защитного покрытия фотоэлектрических преобразователей СБ и геометрическими параметрами (например, углом полураствора) зоны чувствительности рабочей поверхности СБ исходя из условия получения достоверных (сопоставимых) данных по оценке эффективности СБ на протяжении всего периода эксплуатации КА. Например, для СБ, установленных на таком КА как МКС, допустимый диапазон углов падения солнечного излучения на поверхность СБ для выполнения оценки текущей эффективности СБ в ходе полета КА составляет от 70° до 90°.

Опишем технический эффект предлагаемого изобретения.

При эксплуатации в открытом космосе СБ со временем «деградируют», что выражается в постепенном уменьшении вырабатываемого СБ тока. Для учета этого необходимо регулярно проводить сеансы оценки текущей эффективности СБ - замеры тока от СБ, при этом для последующего сопоставления получаемых данных измерения тока должны быть приведены к единым условиям их получении - а именно, к условию воздействия солнечного излучения перпендикулярно рабочей поверхности панели СБ.

Предлагаемое техническое решение позволяет обеспечить выполнение оперативной оценки эффективности СБ по выходному току от СБ на фоне выполнения любой текущей полетной операции КА, когда солнечное излучение может поступать на рабочую поверхность СБ под произвольным углом, в общем случае отличным от прямого, при этом осуществляется учет влияния преломления и частичного отражения падающего под углом к нормали рабочей поверхности СБ солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей СБ. Таким образом, предлагаемое техническое решение позволяет выполнить оперативную оценку эффективности СБ и при отсутствии возможности наведения СБ нормалью ее активной поверхности на Солнце. Это, в свою очередь, позволяет повысить оперативность, а значит и точность оценки текущей эффективности СБ в ходе полета КА за счет оперативного получения дополнительных данных.

Данный технический результат достигается путем измерения вектора направления на Солнце в связанной с КА системе координат и определения текущего значение угла падения солнечного излучения на поверхность СБ в моменты нахождения панели СБ в одном из ее дискретных положений, измерения текущего значения тока от СБ при значении угла падения солнечного излучения на поверхность солнечной батареи, находящемся в задаваемом диапазоне, определяемом характеристиками оптического защитного покрытия фотоэлектрических преобразователей солнечной батареи и геометрическими параметрами зоны чувствительности рабочей поверхности солнечной батареи, и определения выходного тока СБ, соответствующего воздействию солнечного излучения перпендикулярно ее рабочей поверхности, по предлагаемому соотношению.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОГО ТОКА СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОГО ТОКА СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОГО ТОКА СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 261-270 из 380.
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
Показаны записи 261-270 из 361.
25.08.2017
№217.015.b737

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, неподвижно закрепленные на корпусе подшипниковый щит и плату с электродвигателем с шестерней на его валу, цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002614462
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.ba56

Устройство укладки гибкого протяженного по длине элемента в космических условиях и способ его эксплуатации

Изобретение относится к космической технике, в частности к оборудованию по обеспечению работ в космических условиях, а также может быть использовано в наземных условиях и при проведении подводно-технических работ. Предлагается устройство, содержащее несущую структуру в виде двух пластин (1),...
Тип: Изобретение
Номер охранного документа: 0002615466
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c4fe

Центробежное рабочее колесо

Изобретение относится к насосостроению и может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей (1) ведущий диск (2), покрывной диск...
Тип: Изобретение
Номер охранного документа: 0002618372
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c590

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе электродвигатель, размещенные на его валу колеса. Снаружи электродвигателя установлен...
Тип: Изобретение
Номер охранного документа: 0002618377
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
+ добавить свой РИД