×
26.08.2017
217.015.de1e

Результат интеллектуальной деятельности: Электробаромембранный аппарат с плоскими охлаждающими камерами

Вид РИД

Изобретение

№ охранного документа
0002624695
Дата охранного документа
05.07.2017
Аннотация: Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации. Предложен электробаромембранный аппарат с плоскими охлаждающими камерами, в котором первый и последний фланцы корпуса аппарата выполнены с выступом и впадиной соответственно по плоской уплотнительной поверхности, в которых установлены монополярные пористые электроды и уложены мембраны, а между первым и последним фланцами имеются унифицированные промежуточные фланцы корпуса с каналами для циркуляции раствора и прокладки, в которых также имеются отверстия для циркуляции раствора. Между первым и вторым, третьим и четвертым, пятым и шестым, седьмым и восьмым промежуточными фланцами корпуса расположены с обеих сторон от резиновых прокладок диэлектрические пластины, которые в паре образуют охлаждающую камеру. На соответствующих промежуточных фланцах корпуса расположены штуцера для ввода и вывода охлаждающего агента, а на первом и последнем фланцах корпуса имеются каналы и штуцера для ввода и вывода разделяемого раствора. В аппарате чередуются камеры разделения раствора и камеры охлаждения прикатодного и прианодного пермеата. На всех фланцах корпуса имеются штуцера для отвода прикатодного и прианодного пермеата в зависимости от того, через какой монополярный пористый электрод и мембрану проходит пермеат. Для предотвращения утечек исходного и концентрированного раствора, а также для обеспечения необходимой траектории циркуляции раствора в аппарате, на внешней уплотнительной поверхности фланцев корпуса имеются унифицированные внешние паронитовые прокладки, размер внутреннего выреза которых, в целях упрощения совмещения цилиндрических каналов фланцев и отверстий прокладки при сборке, соответствует размерам выступа фланцев корпуса. Для обеспечения циркуляции разделяемого раствора в межмембранном пространстве установлены резиновые прокладки с отверстиями, совмещенными с цилиндрическими каналами промежуточных фланцев корпуса. У поверхности мембран расположены ионообменные спейсеры, состоящие из гранул ионообменного вещества и сетки. Подвод электрического тока к монополярным пористым электродам осуществлен от источника питания постоянного тока через электрические провода и отверстия, расположенные в промежуточных фланцах корпуса и на последнем фланце корпуса, и заполненные герметизирующей композицией. Для обеспечения прочности и жесткости конструкции электробаромембранного аппарата с плоскими охлаждающими камерами установлены металлические пластины на внешней поверхности первого и последнего фланцев корпуса. Технический результат – увеличение эффективной площади мембран, упрощение изготовления и упрощение сборки за счетизменения конструкции аппарата. 7 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Аналогом данной конструкции является мембранный аппарат, конструкция которого приведена в авторском свидетельстве СССР № SU 1745284 А1, кл. В01D 63/08, 1989. Аналог состоит из двух фланцев с каналами ввода и вывода разделяемого раствора и каналами для отвода пермеата, отверстиями для стяжки болтами, устройством для подвода электрического тока, пористыми подложками, которые одновременно служат электродами и дренажем для отвода пермеата, и мембранами, между которыми расположены биполярные электроды. Недостатком аналога является: низкая эффективность разделения при низкой площади мембран и нагревание раствора при прохождении электрического тока, влияющее на рабочие и технологические параметры аппарата. Недостатки частично устранены в прототипе.

Прототипом данной конструкции является электробаромембранный аппарат, который приведен в патенте РФ № RU 2532813 С1, B01D 61/42, B01D 63/08, 07.05.2013. Аппарат состоит из последовательно расположенных фланцев корпуса различной конфигурации, между которыми зажимаются пористые электроды, мембраны и охлаждающие камеры, состоящие из резиновых прокладок и полимерных перегородок. В межмембранном канале установлены ионообменные спейсеры, подвод электрического тока осуществляется параллельно. Недостатками прототипа являются: сложность изготовления аппарата, вызванная необходимостью изготовления множества фланцев корпуса различной конфигурации; сложность сборки аппарата, вызванная необходимостью ручной центровки прокладок между фланцами корпуса; снижение эффективной площади мембран за счет отсутствия электробаромембранного процесса в камерах, прилегающих к первому и последнему фланцам корпуса, в которых отсутствует вторая мембрана и второй электрод.

Технический результат - увеличение эффективной площади мембран, упрощение изготовления и упрощение сборки за счет изменения конструкции аппарата, первый и промежуточные фланцы корпуса которого 1, 2 и 9, которые выполнены с выступом и впадиной, соответственно, по плоской уплотнительной поверхности, в которых имеются каналы 3 для ввода и вывода раствора, выполненные в виде цилиндрических каналов под углом 90° по центру снизу первого фланца корпуса аппарата 1, сверху и снизу в промежуточных фланцах корпуса аппарата 2 и последнего фланца корпуса 9, при этом нижний цилиндрический канал 3 первого фланца корпуса 1 соединен со штуцером 17 ввода разделяемого раствора, плоская уплотнительная поверхность первого фланца корпуса 1 опирается на универсальную паронитовую прокладку 4, на которую уложен промежуточный фланец корпуса 2, причем внутренний вырез паронитовой прокладки 4 соответствует по размеру выступам фланцев корпуса 1 и 2, обеспечивая совпадение отверстий 5 паронитовой прокладки с цилиндрическими каналами 3 фланцев корпуса 1, 2 и 9, на плоской уплотнительной поверхности первого фланца корпуса 1 уложены последовательно монополярный пористый электрод 6 анод, мембрана 7 прианодная, резиновая прокладка 8 с отверстиями 10 диаметром 5 мм по центру снизу и сверху, мембрана 7 прикатодная и монополярный пористый электрод 6 катод, образующие вместе первую разделительную камеру с расположенными внутри камеры ионообменными спейсерами 11, сверху и снизу по центру фланцев корпуса 1, 2 и 9 расположены отверстия диаметром 5 мм, совпадающие с цилиндрическими каналами 12 для отвода пермеата, расположенными под углом 90° к боковой поверхности аппарата, на которые установлены штуцеры 20 отвода пермеата, а плоская уплотнительная поверхность промежуточного фланца корпуса 2 опирается на универсальную паронитовую прокладку 4, на которую уложен следующий промежуточный фланец корпуса 2, при этом универсальная паронитовая прокладка 4 ориентирована отверстием 5 вверх, обеспечивая соединение верхних цилиндрических каналов 3 промежуточных фланцев корпуса 2 и перекрывая нижние цилиндрические каналы 3 промежуточных фланцев корпуса 2, а между уплотнительными поверхностями двух промежуточных фланцев корпуса 2 зажаты последовательно полимерная диэлектрическая перегородка 13, резиновая прокладка 14 и полимерная диэлектрическая перегородка 13, образующие плоскую охлаждающую камеру, в боковой поверхности которой просверлены сверху и снизу отверстия 15 диаметром 8 мм для ввода и вывода охлаждающего агента, на которые установлены штуцеры 18 ввода и 19 вывода охлаждающего агента, а на поверхность второго промежуточного фланца корпуса 2 укладывается универсальная паронитовая прокладка 4 и третий промежуточный фланец корпуса 2, при этом отверстие 5 универсальной паронитовой прокладки 4 ориентирована таким образом, чтобы обеспечить переток раствора из разделительной камеры, образованной первым фланцем корпуса 1 и промежуточным фланцем корпуса 2, в разделительную камеру, образованную вторым и третьим промежуточными фланцами корпуса 2, а после необходимого числа чередующихся разделительных и охлаждающих камер на уплотнительную поверхность крайнего промежуточного фланца корпуса 2 уложена универсальная паронитовая прокладка 4, на которую опирается последний фланец корпуса 9, а отверстие 5 универсальной паронитовой прокладки 4 совмещено с цилиндрическим каналом 3 последнего фланца корпуса 9, а между промежуточным фланцем корпуса 2 и последним фланцем корпуса 9 зажаты последовательно монополярный пористый электрод 6 анод, мембрана 7 прианодная, резиновая прокладка 8 с отверстиями 10 по центру снизу и сверху, мембрана 7 прикатодная и монополярный пористый электрод 6 катод, образующие вместе последнюю разделительную камеру, при этом отверстие 10 резиновой прокладки 8 совмещено с цилиндрическим каналом 3 последнего фланца корпуса 9, на котором установлен штуцер вывода разделяемого раствора 16, а все фланцы корпуса стянуты металлическими шпильками 21 и гайками 23 с шайбами 22, а прочность конструкции усилена боковыми металлическими пластинами 24, а через проточки 25 с залитыми герметизирующей композицией электрическими проводами монополярные пористые электроды 6 подключены параллельно к источнику тока 26.

На фиг. 1 изображен фронтальный разрез и боковой вид электробаромембранного аппарата с плоскими охлаждающими камерами; фиг. 2 – фронтальный вид и боковой разрез первого фланца корпуса; фиг. 3 – фронтальный вид и боковой разрез промежуточного фланца корпуса; фиг. 4 – фронтальный вид и боковой разрез последнего фланца корпуса; фиг. 5 – фронтальный вид и боковой разрез универсальной паронитовой прокладки; фиг.6 – фронтальный вид и боковой разрез резиновой прокладки разделительной камеры; фиг. 7 – фронтальный вид и боковой разрез резиновой прокладки охлаждающей камеры.

Электробаромембранный аппарат с плоскими охлаждающими камерами состоит из первого и промежуточных фланцев корпуса 1, 2 и 9, которые выполнены с выступом и впадиной, соответственно, по плоской уплотнительной поверхности, в которых имеются каналы 3 для ввода и вывода раствора, выполненные в виде цилиндрических каналов под углом 90° по центру снизу первого фланца корпуса аппарата 1, сверху и снизу в промежуточных фланцах корпуса аппарата 2 и последнего фланца корпуса 9, при этом нижний цилиндрический канал 3 первого фланца корпуса 1 соединен со штуцером 17 ввода разделяемого раствора, плоская уплотнительная поверхность первого фланца корпуса 1 опирается на универсальную паронитовую прокладку 4, на которую уложен промежуточный фланец корпуса 2, причем внутренний вырез паронитовой прокладки 4 соответствует по размеру выступам фланцев корпуса 1 и 2, обеспечивая совпадение отверстий 5 паронитовой прокладки с цилиндрическими каналами 3 фланцев корпуса 1, 2 и 9, на плоской уплотнительной поверхности первого фланца корпуса 1 уложены последовательно монополярный пористый электрод 6 анод, мембрана 7 прианодная, резиновая прокладка 8 с отверстиями 10 диаметром 5 мм по центру снизу и сверху, мембрана 7 прикатодная и монополярный пористый электрод 6 катод, образующие вместе первую разделительную камеру с расположенными внутри камеры ионообменными спейсерами 11, сверху и снизу по центру фланцев корпуса 1, 2 и 9 расположены отверстия диаметром 5 мм, совпадающие с цилиндрическими каналами 12 для отвода пермеата, расположенными под углом 90° к боковой поверхности аппарата, на которые установлены штуцеры 20 отвода пермеата, а плоская уплотнительная поверхность промежуточного фланца корпуса 2 опирается на универсальную паронитовую прокладку 4, на которую уложен следующий промежуточный фланец корпуса 2, при этом универсальная паронитовая прокладка 4 ориентирована отверстием 5 вверх, обеспечивая соединение верхних цилиндрических каналов 3 промежуточных фланцев корпуса 2 и перекрывая нижние цилиндрические каналы 3 промежуточных фланцев корпуса 2, а между уплотнительными поверхностями двух промежуточных фланцев корпуса 2 зажаты последовательно полимерная диэлектрическая перегородка 13, резиновая прокладка 14 и полимерная диэлектрическая перегородка 13, образующие плоскую охлаждающую камеру, в боковой поверхности которой просверлены сверху и снизу отверстия 15 диаметром 8 мм для ввода и вывода охлаждающего агента, на которые установлены штуцеры 18 ввода и 19 вывода охлаждающего агента, а на поверхность второго промежуточного фланца корпуса 2 укладывается универсальная паронитовая прокладка 4 и третий промежуточный фланец корпуса 2, при этом отверстие 5 универсальной паронитовой прокладки 4 ориентировано таким образом, чтобы обеспечить переток раствора из разделительной камеры, образованной первым фланцем корпуса 1 и промежуточным фланцем корпуса 2, в разделительную камеру, образованную вторым и третьим промежуточными фланцами корпуса 2, а после необходимого числа чередующихся разделительных и охлаждающих камер на уплотнительную поверхность крайнего промежуточного фланца корпуса 2 уложена универсальная паронитовая прокладка 4, на которую опирается последний фланец корпуса 9, а отверстие 5 универсальной паронитовой прокладки 4 совмещено с цилиндрическим каналом 3 последнего фланца корпуса 9, а между промежуточным фланцем корпуса 2 и последним фланцем корпуса 9 зажаты последовательно монополярный пористый электрод 6 анод, мембрана 7 прианодная, резиновая прокладка 8 с отверстиями 10 по центру снизу и сверху, мембрана 7 прикатодная и монополярный пористый электрод 6 катод, образующие вместе последнюю разделительную камеру, при этом отверстие 10 резиновой прокладки 8 совмещено с цилиндрическим каналом 3 последнего фланца корпуса 9, на котором установлен штуцер вывода разделяемого раствора 16, а все фланцы корпуса стянуты металлическими шпильками 21 и гайками 23 с шайбами 22, а прочность конструкции усилена боковыми металлическими пластинами 24, а через проточки 25 с залитыми герметизирующей композицией электрическими проводами монополярные пористые электроды 6 подключены параллельно к источнику тока 26.

Фланцы корпуса аппарата 1, 2 и 9 могут быть изготовлены из капролона.

Металлические шпильки 21, болты 23 и шайбы 22 могут быть изготовлены из стали 25.

Герметизирующая композиция в проточках 25 может быть выполнена из эпоксидных смол.

Металлические пластины 24 могут быть изготовлены из стали 3, стали 15, стали 25, стали 30, стали 45.

Прокладки 4 могут быть изготовлены из паронита, прокладки 8 и 14 – из резины.

Диэлектрические пластины 13 могут быть изготовлены из полиэтилентерефталата (ПЭТ), керамики.

Мембраны 7 могут быть типов УАМ-150, УАМ-300П, УАМ-1000П, УПМ-ПП, УПМ-200, УПМ-П, УФМ-П, УФМ-100, МФФК-3, ОПМ-К, ОПМН-П, ESPA1, ESNA, МГА-80П, МГА-95, МГА-100.

Аппарат работает следующим образом.

Исходный раствор поступает через штуцер 17, фиг.1 ввода разделяемого раствора в цилиндрический канал 3 в первом фланце корпуса 1, проходит через отверстие 5 в универсальной паронитовой прокладке 4 и попадает в цилиндрический канал 3 первого промежуточного фланца корпуса 2, откуда сквозь отверстие 10 внизу по центру резиновой прокладки 8 поступает в первую разделительную камеру, образованную зажатыми между первым фланцем корпуса 1 и первым промежуточным фланцем корпуса 2 монополярным пористым электродом 6 – анодом, прианодной мембраной 7, резиновой прокладкой 8, прикатодной мембраной 7 и монополярным пористым электродом 6 – катодом. В каждой разделительной камере расположены ионообменные спейсеры 11, состоящие из ионообменной сетки и гранул. Ток раствора по нижнему цилиндрическому каналу 3 первого промежуточного фланца корпуса 2 во второй промежуточный фланец корпуса преграждает универсальная паронитовая прокладка 4. После заполнения первой разделительной камеры исходный раствор через отверстие 10 вверху по центру резиновой прокладки 8 поступает в цилиндрический канал 3 первого промежуточного фланца корпуса 2, откуда проходит сквозь отверстия 5 в универсальной паронитовой прокладке 4 в цилиндрические каналы 3 второго и третьего промежуточных фланцев корпуса 2. Дальнейший ток по верхнему цилиндрическому каналу 3 прегражден универсальной паронитовой прокладкой 4, и раствор заполняет через отверстие 10 вверху по центру резиновой прокладки 8 вторую разделительную камеру, образованную зажатыми между вторым и третьим промежуточными фланцами корпуса 2 монополярным пористым электродом 6 – анодом, прианодной мембраной 7, резиновой прокладкой 8, прикатодной мембраной 7 и монополярным пористым электродом 6 – катодом. Далее аналогичным образом исходный раствор заполняет все разделительные камеры и через отверстие 10 вверху по центру резиновой прокладки 8 крайней разделительной камеры поступает в цилиндрический канал 3 вверху последнего фланца корпуса 9, откуда выводится через штуцер 16 вывода раствора. В этот же момент времени к аппарату от источника тока 26 подводится внешнее постоянное электрическое поле с определенной плотностью тока. Под действием электрического тока и приложенного давления анионы, проникающие через прианодную мембрану 7, и пористый монополярный электрод 6 отводятся с прианодным пермеатом по каналу 12 в виде кислот через штуцер 20 прианодного пермеата. Прианодный пермеат соприкасается с диэлектрической пластиной 13, которая вместе с резиновой прокладкой 14 образует охлаждающую камеру и является ее стенкой, отводя избыток тепла, образующегося при нагревании монополярных пористых электродов, от прианодного пермеата. Катионы, проникающие через прикатодную мембрану 7, и пористый монополярный электрод 6 отводятся с прикатодным пермеатом по каналу 12 в виде оснований через штуцер 20 прикатодного пермеата. Прикатодный пермеат соприкасается с диэлектрической пластиной 13, которая является стенкой охлаждающей камеры, отводя избыток тепла, образующегося при нагревании монополярных пористых электродов, от прикатодного пермеата. Газы, образованные в результате электрохимических реакций в аппарате, также отводятся через штуцер 20. Одновременно с заполнением аппарата исходным раствором охлаждающий агент подается через штуцеры 18 и по каналам 15 заполняет охлаждающие камеры, отводя избыток тепла от пермеата, и выводится через отверстия 15 и штуцеры вывода охлаждающего агента 19.

Контакт прикатодного и прианодного пермеата с диэлектрическими пластинами 13 охлаждающей камеры выполняется с целью отвода избытка тепла от пермеата, т.к. с увеличением времени работы аппарата с наложением электрического поля возрастает температура поверхности электродов и мембран, негативно влияя на рабочие характеристики мембран. Кроме того, высокая температура способствует брожению биологически активных растворов, делая невозможным применение аппарата для их концентрирования.

В качестве охлаждающего агента используется вода с температурой 278 К-288 К.

Отверстия 15 представляют собой проточки цилиндрической формы, выполненные в соответствующих камерах корпуса.

Цилиндрический канал 3, расположенный под углом 90° во фланцах корпуса и камерах корпуса, представляет собой два канала цилиндрической формы, соединенные друг с другом и расположенные перпендикулярно друг к другу, фиг.1.

На разработанной конструкции электробаромембранного аппарата с плоскими фильтрующими элементами можно проводить баромембранные процессы без наложения электрического поля. В частности, на разработанной конструкции электробаромембранного аппарата с плоскими фильтрующими элементами можно проводить мембранные процессы с разряжением под вакуумом.

Электробаромембранный аппарат с плоскими охлаждающими камерами, состоящий из фланцев корпуса трех типов с каналами ввода и вывода разделяемого раствора и каналами для отвода прикатодного и прианодного пермеата, отверстиями для шпилек, устройством для подвода постоянного электрического тока к камерам аппарата, прикатодных и прианодных мембран, переточных отверстий, шпилек, прокладок, ионообменных спейсеров, отличающийся тем, что первый и промежуточные фланцы корпуса выполнены с выступом и впадиной соответственно по плоской уплотнительной поверхности, в которых имеются каналы для ввода и вывода раствора, выполненные в виде цилиндрических каналов под углом 90° по центру снизу первого фланца корпуса аппарата, сверху и снизу в промежуточных фланцах корпуса аппарата и последнего фланца корпуса, при этом нижний цилиндрический канал первого фланца корпуса соединен со штуцером ввода разделяемого раствора, плоская уплотнительная поверхность первого фланца корпуса опирается на универсальную паронитовую прокладку, на которую уложен промежуточный фланец корпуса, причем внутренний вырез паронитовой прокладки соответствует по размеру выступам фланцев корпуса, обеспечивая совпадение отверстий паронитовой прокладки с цилиндрическими каналами фланцев корпуса, на плоской уплотнительной поверхности первого фланца корпуса уложены последовательно монополярный пористый электрод анод, мембрана прианодная, резиновая прокладка с отверстиями диаметром 5 мм по центру снизу и сверху, мембрана прикатодная и монополярный пористый электрод катод, образующие вместе первую разделительную камеру, с расположенными внутри камеры ионообменными спейсерами, сверху и снизу по центру фланцев корпуса расположены отверстия диаметром 5 мм, совпадающие с цилиндрическими каналами для отвода пермеата, расположенными под углом 90° к боковой поверхности аппарата, на которые установлены штуцеры отвода пермеата, а плоская уплотнительная поверхность промежуточного фланца корпуса опирается на универсальную паронитовую прокладку, на которую уложен следующий промежуточный фланец корпуса, при этом универсальная паронитовая прокладка ориентирована отверстием вверх, обеспечивая соединение верхних цилиндрических каналов промежуточных фланцев корпуса и перекрывая нижние цилиндрические каналы промежуточных фланцев корпуса, а между уплотнительными поверхностями двух промежуточных фланцев корпуса зажаты последовательно полимерная диэлектрическая перегородка, резиновая прокладка и полимерная диэлектрическая перегородка, образующие плоскую охлаждающую камеру, в боковой поверхности которой просверлены сверху и снизу отверстия диаметром 8 мм для ввода и вывода охлаждающего агента, на которые установлены штуцеры ввода и вывода охлаждающего агента, а на поверхность второго промежуточного фланца корпуса укладывается универсальная паронитовая прокладка и третий промежуточный фланец корпуса, при этом отверстие универсальной паронитовой прокладки ориентировано таким образом, чтобы обеспечить переток раствора из разделительной камеры, образованной первым фланцем корпуса и промежуточным фланцем корпуса, в разделительную камеру, образованную вторым и третьим промежуточными фланцами корпуса, а после необходимого числа чередующихся разделительных и охлаждающих камер на уплотнительную поверхность крайнего промежуточного фланца корпуса уложена универсальная паронитовая прокладка, на которую опирается последний фланец корпуса, а отверстие универсальной паронитовой прокладки 4 совмещено с цилиндрическим каналом 3 последнего фланца корпуса, а между промежуточным фланцем корпуса и последним фланцем корпуса зажаты последовательно монополярный пористый электрод анод, мембрана прианодная, резиновая прокладка с отверстиями по центру снизу и сверху, мембрана прикатодная и монополярный пористый электрод катод, образующие вместе последнюю разделительную камеру, при этом отверстие резиновой прокладки совмещено с цилиндрическим каналом последнего фланца корпуса, на котором установлен штуцер вывода разделяемого раствора, а все фланцы корпуса стянуты металлическими шпильками и гайками с шайбами, а прочность конструкции усилена боковыми металлическими пластинами, а через проточки с залитыми герметизирующей композицией электрическими проводами монополярные пористые электроды подключены параллельно к источнику тока.
Электробаромембранный аппарат с плоскими охлаждающими камерами
Электробаромембранный аппарат с плоскими охлаждающими камерами
Электробаромембранный аппарат с плоскими охлаждающими камерами
Электробаромембранный аппарат с плоскими охлаждающими камерами
Электробаромембранный аппарат с плоскими охлаждающими камерами
Электробаромембранный аппарат с плоскими охлаждающими камерами
Электробаромембранный аппарат с плоскими охлаждающими камерами
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
07.03.2020
№220.018.0a6d

Устройство для измерения эффективной площади рассеяния радиолокационных объектов

Изобретение относится к области радиолокационной техники и может быть использовано при измерении эффективной площади рассеяния различных объектов радиолокации, соизмеримых и меньших длины волны. Достигаемый технический результат – повышение точности измерения сверхмалых значений эффективной...
Тип: Изобретение
Номер охранного документа: 0002715991
Дата охранного документа: 05.03.2020
19.06.2020
№220.018.27f7

Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с определением третьей координаты элементов формируемого изображения

Изобретение относится к радиолокационной измерительной технике и может быть использовано, в частности, в радиолокационных измерительных комплексах (стендах) с измерительными установками многочастотного импульсного зондирования, осуществляющих построение двумерных радиолокационных изображений...
Тип: Изобретение
Номер охранного документа: 0002723706
Дата охранного документа: 17.06.2020
Показаны записи 21-30 из 33.
19.04.2019
№219.017.1cf6

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Электробаромембранный аппарат трубчатого типа состоит из: цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов...
Тип: Изобретение
Номер охранного документа: 0002685091
Дата охранного документа: 16.04.2019
31.05.2019
№219.017.7118

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Конструкция аппарата состоит из корпуса с торцевыми и ответными фланцами, трубных решеток, монополярных электродов - анода и катода, прикатодных и прианодных мембран, сборников прианодного и прикатодного пермеата, клемм...
Тип: Изобретение
Номер охранного документа: 0002689615
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.7153

Электробаромембранный аппарат плоскокамерного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других...
Тип: Изобретение
Номер охранного документа: 0002689617
Дата охранного документа: 28.05.2019
04.06.2019
№219.017.7346

Электродиализатор с охлаждением разделяемого раствора

Изобретение относится к области очистки, разделения и концентрирования растворов электродиализным методом. Применение возможно в пищевой, химической, микробиологической, текстильной и других отраслях промышленности. Электродиализатор с охлаждением разделяемого раствора включает в себя две...
Тип: Изобретение
Номер охранного документа: 0002690339
Дата охранного документа: 31.05.2019
09.08.2019
№219.017.bd3f

Способ снижения температуры воздуха в полости между коническим корпусом силовой турбины двигателя ал-31стн и внутренним корпусом улитки газоперекачивающего агрегата ц1-16л/76-1,44

Изобретение относится к области газовой промышленности и может быть использовано при эксплуатации ГПА-Ц1-16Л/76-1,44 с двигателем АЛ-31СТН как способ снижения температуры воздуха между корпусом силовой турбины двигателя АЛ-31СТН и внутренним корпусом улитки ГПА-Ц1-16Л/76-1,44 в системе отвода...
Тип: Изобретение
Номер охранного документа: 0002696521
Дата охранного документа: 02.08.2019
02.10.2019
№219.017.cea1

Электробаромембранный аппарат трубчатого типа

Изобретение может быть использовано в мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации. Разделяемый раствор под давлением, превышающим осмотическое давление растворенных в нем веществ, через штуцер ввода исходного раствора 5...
Тип: Изобретение
Номер охранного документа: 0002700333
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.ceeb

Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Предлагается электробаромембранный аппарат рулонного типа, состоящий из корпуса, выполненного из диэлектрического материала, штуцеров для ввода и вывода охлаждающей воды, перфорированной трубки, пленок, имеющих насечки,...
Тип: Изобретение
Номер охранного документа: 0002700379
Дата охранного документа: 16.09.2019
01.02.2020
№220.017.fc0b

Электробаромембранный аппарат комбинированного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, микробиологической, медицинской, пищевой и других областях промышленности....
Тип: Изобретение
Номер охранного документа: 0002712599
Дата охранного документа: 29.01.2020
07.03.2020
№220.018.0a14

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат включает цилиндрический корпус с ответными и торцевыми фланцами, трубные решетки, прижимные решетки, монополярные...
Тип: Изобретение
Номер охранного документа: 0002716121
Дата охранного документа: 05.03.2020
07.03.2020
№220.018.0a6d

Устройство для измерения эффективной площади рассеяния радиолокационных объектов

Изобретение относится к области радиолокационной техники и может быть использовано при измерении эффективной площади рассеяния различных объектов радиолокации, соизмеримых и меньших длины волны. Достигаемый технический результат – повышение точности измерения сверхмалых значений эффективной...
Тип: Изобретение
Номер охранного документа: 0002715991
Дата охранного документа: 05.03.2020
+ добавить свой РИД