×
26.08.2017
217.015.de11

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ СДВИГА ЧАСТОТЫ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА НА ДЛИНЕ ОПТИЧЕСКОГО ВОЛОКНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части. Первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно. Из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника. На другой вход балансного приемника подают сигнал обратного рассеяния, поступающий обратно из испытуемого оптического волокна, причем измерения выполняют при двух ортогональных состояниях поляризации опорного оптического сигнала. Электрический сигнал с выхода балансного фотоприемника подают на один вход смесителя, на другой вход которого подают радиочастотный сигнал. Из комплексного сигнала на выходе смесителя выделяют низкочастотный сигнал биений и подают на вход блока управления и обработки, где результаты измерений запоминают для каждого шага при каждом значении частоты. Затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения. Сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоте радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение. Техническим результатом изобретения является расширение области применения. 1 ил.

Изобретение относится к области измерительной техники, предназначено для измерения сдвига частоты рассеяния Мандельштама-Бриллюэна в зависимости от координат по длине оптического волокна и может быть использовано для реализации бриллюэновских оптических рефлектометров, которые имеют широкую область применения в сенсорных системах контроля протяженных объектов, таких как оптические кабели, трубопроводы, мосты, дороги и т.д.

Известны способы [1-4] измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, в которых искомый сдвиг частоты определяется косвенно по результатам прямых измерений уровней оптической мощности сигнала обратного рассеяния либо из отношения Ландау-Плячека [1], либо из отношения значений оптической мощности сигналов обратного рассеяния Мандельштама-Бриллюэна испытуемого оптического волокна и опорного оптического волокна [2-4]. Основным недостатком данных способов являются низкая чувствительность и большая погрешность измерений, обусловленные низкой точностью измерений малых изменений оптической мощности слабых рассеянных сигналов, что существенно ограничивает область их применения.

Известны способы [5, 6], базирующиеся на выделении обратного рассеяния Мандельштама-Бриллюэна с помощью резонансного усилителя на основе вынужденного рассеяния Мандельштама-Бриллюэна (ВРМБ усилителя). Для работы ВРМБ усилителя необходимо непрерывное излучение лазера с мощностью порядка нескольких десятков или даже сотен мВТ со спектральной полосой менее 100 МГц. Кроме того, требуется два лазера с высокой точностью согласования их частот, причем как минимум один из них должен быть перестраиваемым. Такие требования приводят к значительному увеличению потребляемой энергии и удорожанию реализации методов, что ограничивает область их применения.

Наиболее близким к предлагаемому способу является способ измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна [7], заключающийся в том, что непрерывное оптическое излучение задающего лазера разделяют на две части, первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно, из второй части формируют опорный оптический сигнал одной поляризации, для чего вторую часть непрерывного оптического излучения задающего лазера сначала модулируют сигналом СВЧ, а затем выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, подают опорный оптический сигнал одной поляризации на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий обратно из испытуемого оптического волокна, на выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки, где результаты измерений запоминают, частоту модулирующего сигнала СВЧ изменяют в диапазоне 10-11 ГГц с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты модулирующего сигнала СВЧ, после чего, изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения, по результатам обработки данных измерений получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, определяя сдвиг частоты рассеяния Мандельштама-Бриллюэна как значение частоты модулирующего сигнала СВЧ, при котором сумма сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способу измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, заключающемуся в том, что непрерывное оптическое излучение задающего лазера разделяют на две части, первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно, из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий обратно из испытуемого оптического волокна, причем измерения выполняют при двух ортогональных состояниях поляризации опорного оптического сигнала, при этом, чтобы сформировать опорный оптический сигнал, вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего обратно из опорного оптического волокна, с помощью оптического фильтра выделяют сигнал обратного рассеяния Мандельштама-Бриллюэна, из которого выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, электрический сигнал с выхода балансного фотоприемника подают на один вход смесителя, на другой вход которого подают радиочастотный сигнал, частоту которого изменяют в диапазоне до нескольких сот мегагерц с шагом менее 100 МГц, из комплексного сигнала на выходе смесителя выделяют низкочастотный сигнал биений, подают на вход блока управления и обработки, где результаты измерений запоминают для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения, после чего сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют при обработке данных измерений как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.

На фиг.1 представлена структурная схема устройства для реализации заявляемого способа.

Устройство содержит задающий узкополосный лазер непрерывного оптического излучения 1, оптический разветвитель 2, генератор импульсов 3, электрооптический модулятор 4, первый оптический усилитель 5, первый оптический циркулятор 6, испытуемое оптическое волокно 7, второй оптический циркулятор 8, опорное оптическое волокно 9, оптический фильтр 10, переключаемый поляризатор 11, балансный фотоприемник 12, смеситель 13, генератор радиочастот 14, фильтр нижних частот 15, блок управления и обработки 16.

Выход задающего узкополосного лазера непрерывного оптического излучения 1 соединен со входом оптического разветвителя 2, первый выход которого подключен к оптическому входу электрооптического модулятора 4, а второй - к первому входу второго оптического циркулятора 8. Электрический вход электрооптического модулятора 4 соединен с выходом генератора импульсов 3, а выход электрооптического модулятора 4 подключен ко входу первого оптического усилителя 5, выход которого подключен к первому входу первого оптического циркулятора 5, ко второму входу которого подключено испытуемое оптическое волокно 6. При этом ко второму входу второго оптического циркулятора 8 подключено опорное оптическое волокно 9, а третий вход второго оптического циркулятора 8 соединен со входом оптического фильтра 10, выход которого подключен ко входу переключаемого поляризатора 11. Выход переключаемого поляризатора 11 подключен к одному входу балансного фотоприемника 12, к другому входу которого подключен третий вход первого оптического циркулятора 6. Выход балансного фотоприемника 12 соединен с первым входом смесителя 13, ко второму входу которого подключен выход генератора радиочастот 14, а выход смесителя 13 соединен со входом фильтра нижних частот 15, выход которого соединен со входом блока управления и обработки 16. При этом первый выход управления блока управления и обработки 16 соединен со входом управления генератора импульсов 3, второй выход управления блока управления и обработки 16 соединен со входом управления переключаемого поляризатора 11, а третий выход управления блока управления и обработки 16 соединен со входом управления генератора радиочастот 14.

Устройство работает следующим образом. Оптический разветвитель 2 разделяет оптическое излучение задающего узкополосного лазера непрерывного оптического излучения 1 на две части. Первая часть оптического излучения задающего узкополосного лазера непрерывного оптического излучения 1 с первого выхода оптического разветвителя 2 поступает на оптический вход электрооптического модулятора 4, на электрический вход которого поступает последовательность импульсов от генератора импульсов 3, которая модулирует оптическое излучение. В результате на выходе электрооптического модулятора 4 формируется последовательность оптических импульсов, которая усиливается в оптическом усилителе 5 и через первый оптический циркулятор 6 поступает в испытуемое оптическое волокно 7. Вторая часть оптического излучения задающего узкополосного лазера непрерывного оптического излучения 1 со второго выхода оптического разветвителя 2 через второй оптический циркулятор 8 поступает в опорное оптическое волокно 9. Поступающий из опорного оптического волокна 9 оптический сигнал обратного рассеяния через второй оптический циркулятор 8 поступает на вход оптического фильтра 10. Оптический фильтр 10, который может быть выполнен, например, на основе интерферометра Маха-Зандера, выделяет из суммарного сигнала обратного рассеяния сигнал обратного рассеяния Мандельштама-Бриллюэна, который с выхода оптического фильтра 10 поступает на вход переключаемого поляризатора 11. Переключаемый поляризатора 11 выделяет из него компоненту с одним из двух устанавливаемых переключаемым поляризатором 11 ортогональных состояний поляризации. Эта компонента - опорный оптический сигнал одной поляризации. Этот опорный оптический сигнал одной поляризации поступает на один вход балансного фотоприемника 12, на другой вход которого через первый оптический циркулятор 6 поступает сигнал обратного рассеяния из испытуемого оптического волокна 7. Электрический сигнал с выхода балансного фотоприемника поступает на один вход смесителя 13, на другой вход которого от генератора радиочастот 14 поступает радиочастотный сигнал. Фильтр нижних частот 15 выделяет из комплексного сигнала на выходе смесителя 13 низкочастотный сигнал биений, который затем поступает на вход блока управления и обработки 16. Блок управления и обработки 16 запоминает этот сигнал.

Из испытуемого оптического волокна 7 на балансный фотоприемник 12 поступает сигнал обратного рассеяния из испытуемого оптического волокна, который включает релеевскую компоненту с частотой ω0 оптической несущей задающего узкополосного лазера непрерывного оптического излучения 1 и стоксову и антистоксову компоненты с частотой ω0±ΔωВ, где ΔωВ - сдвиг частоты рассеяния Мандельштама-Бриллюэна. Собственно сдвиг частоты рассеяния Мандельштама-Бриллюэна можно рассматривать как сумму ΔωВ=ΔωВ0+ΔωВР, где сдвиг ΔωВ0 - сдвиг частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий, а сдвиг частоты ΔωВР - изменения, обусловленные собственно температурными и механическими воздействиями. Отсюда частота стоксовой и антистоксовой компонент в испытуемом оптическом волокне 7 ω0±(ΔωВ0+ΔωВР). Частота опорного оптического сигнала равна ω0±ΔωВ0. Соответственно, на выходе балансного приемника формируется электрический сигнал с частотой, равной ΔωВР. На выходе смесителя формируется комплексный сигнал, включающий компоненты с частотами ΔωВР±ωRF. При условии приближенного равенства ΔωВР≈ωRF на выходе фильтра нижних частот 15 имеют место низкочастотные биения. По наличию сигнала биений, поступающего на вход блока управления и обработки 16, определяется сдвиг частоты рассеяния Мандельштама-Бриллюэна как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты радиочастотного сигнала, при котором значение суммы амплитуд сигналов биений на входе блока управления и обработки 16, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.

Частота модулирующего сигнала генератора радиочастот 14 изменяется с шагом менее 100 МГц в диапазоне до нескольких сотен мегагерц. Результаты измерений сигналов, поступающих на вход блока управления и обработки 16, запоминаются на каждом шаге измерений для каждого значения частоты. Как и в прототипе, для устранения недостатков гетеродинного приема измерения выполняются для двух ортогональных состояний поляризации опорного оптического сигнала. Для этого переключаемый поляризатор 11 в зависимости от сигнала управления от блока управления и обработки 16 выделяет в процессе измерений по очереди компоненты с одним из двух ортогональных состояний поляризации. Результаты измерений для каждого из двух состояний поляризации опорного оптического сигнала запоминаются в блоке управления и обработки 16. Управление генератором импульсов 3, переключаемым поляризатором 11, и генератором радиочастот 14 от блока управления и обработки 16 обеспечивает синхронизацию работы устройства. Сдвиг частоты рассеяния Мандельштама-Бриллюэна определяется по результатам обработки данных измерений при изменении частоты генератора радиочастот 14 и состояния поляризации опорного оптического сигнала одной поляризации как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки 16, измеренных при двух ортогональных состояниях опорного оптического сигнала одной поляризации, превышает заданное пороговое значение. Возможность реализации данного устройства определяется возможностью реализации его основных компонентов.

В отличие от известного способа, которым является прототип, предлагаемый способ измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна позволяет значительно уменьшить шаг изменения частоты опорного оптического сигнала одной поляризации и тем самым увеличить разрешающую способность. Кроме того, предлагаемый способ в отличие от прототипа исключает потребность в использовании дорогостоящей техники СВЧ и, соответственно, облегчает решение проблем электромагнитной совместимости, что позволяет существенно снизить затраты на его реализацию по сравнению с прототипом. В итоге, перечисленные выше преимущества расширяют область применения заявляемого способа по сравнению с прототипом.

ЛИТЕРАТУРА

1. Wait Р.С., Newson T.P. Landau Placzek ratio applied to distributed fibre sensing// Optics Communications, v. 122, 4-6, 1996, p.p. 141-146.

2. Патент RU 127926.

3. Патент RU 139203.

4. Патент RU 141314.

5. Патент RU 2444001.

6. Патент RU 2229693.

7. Muping Song, Bin Zhao, Xianmin Zhang. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception// Chinese Optics Letters, v. 3, No. 5, 2005, - p.p. 271-274

Способ измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, заключающийся в том, что непрерывное оптическое излучение задающего лазера разделяют на две части, первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно, из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий обратно из испытуемого оптического волокна, причем измерения выполняют при двух ортогональных состояниях поляризации опорного оптического сигнала, отличающийся тем, что, чтобы сформировать опорный оптический сигнал, вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего обратно из опорного оптического волокна, с помощью оптического фильтра выделяют сигнал обратного рассеяния Мандельштама-Бриллюэна, из которого выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, электрический сигнал с выхода балансного фотоприемника подают на один вход смесителя, на другой вход которого подают радиочастотный сигнал, частоту которого изменяют в диапазоне до нескольких сот мегагерц с шагом менее 100 МГц, из комплексного сигнала на выходе смесителя выделяют низкочастотный сигнал биений, подают на вход блока управления и обработки, где результаты измерений запоминают для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения, после чего сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют при обработке данных измерений как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.
СПОСОБ ИЗМЕРЕНИЯ СДВИГА ЧАСТОТЫ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА НА ДЛИНЕ ОПТИЧЕСКОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ СДВИГА ЧАСТОТЫ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА НА ДЛИНЕ ОПТИЧЕСКОГО ВОЛОКНА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 57.
26.08.2017
№217.015.de6e

Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим...
Тип: Изобретение
Номер охранного документа: 0002624771
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de74

Способ выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами

Изобретение относится к области электротехники и может быть использовано для выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами. Согласно способу выравнивания связи мод в оптических...
Тип: Изобретение
Номер охранного документа: 0002624770
Дата охранного документа: 06.07.2017
29.12.2017
№217.015.f892

Глушитель шума автотранспортного средства

Изобретение относится к глушителям шума двигателя внутреннего сгорания. Глушитель шума автотранспортного средства содержит входной расширяющийся патрубок (1) и выходной сужающийся патрубок (2), внутри которых установлены соответственно перфорированные пластины (3) и (4), во входном патрубке (1)...
Тип: Изобретение
Номер охранного документа: 0002639636
Дата охранного документа: 21.12.2017
19.01.2018
№218.016.0645

Устройство для измерения величины износа и температуры изделия при трении (варианты)

Группа изобретений относится к области оптических измерений одновременно нескольких параметров изделий, в частности к устройствам для измерения величины износа и температуры изделий при трении. Устройство для измерения величины износа и температуры изделия при трении по его первому варианту и...
Тип: Изобретение
Номер охранного документа: 0002631082
Дата охранного документа: 18.09.2017
20.01.2018
№218.016.157f

Заглушенная камера для акустических и газодинамических измерений шумов элементов конструкции авиационных гтд

Изобретение относится к измерительной технике, а в частности для проведения оптико-акустических и газодинамических измерений в помещении, для создания свободного звукового поля в помещении, при продувке моделей элементов авиационных ГТД и позволяет повысить надежность и достоверность получаемой...
Тип: Изобретение
Номер охранного документа: 0002634979
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.1c2a

Способ маршрутизации в беспроводных сетях zigbee

Изобретение относится к области беспроводной связи и может быть использовано в беспроводных сенсорных сетях ZigBee.Технический результат состоит в повышении точности маршрутизации при двухадресных пакетах, содержащих адрес начального отправителя и конечного получателя. Для этого функции портов,...
Тип: Изобретение
Номер охранного документа: 0002640349
Дата охранного документа: 28.12.2017
13.02.2018
№218.016.1fd7

Способ увеличения срока службы оптического кабеля

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой...
Тип: Изобретение
Номер охранного документа: 0002641298
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.269a

Способ измерения избыточной длины оптического волокна в модульной трубке оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля. Согласно способу измерения избыточной длины оптического волокна в модульной трубке оптического кабеля характеристики обратного...
Тип: Изобретение
Номер охранного документа: 0002644032
Дата охранного документа: 07.02.2018
09.06.2018
№218.016.5d6b

Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Способ применения роя беспилотных летательных аппаратов для...
Тип: Изобретение
Номер охранного документа: 0002656281
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5d73

Способ развертывания фазированной антенной решетки

Изобретение относится к антенной технике и может быть использовано для оперативного развертывания фазированной антенной решетки. В некотором пространстве размещают блоки автономного питания, приемо-передающие блоки и элементы фазированной антенной решетки, соединяют отдельные блоки и элементы с...
Тип: Изобретение
Номер охранного документа: 0002656285
Дата охранного документа: 04.06.2018
Показаны записи 31-40 из 62.
13.02.2018
№218.016.1fd7

Способ увеличения срока службы оптического кабеля

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой...
Тип: Изобретение
Номер охранного документа: 0002641298
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.269a

Способ измерения избыточной длины оптического волокна в модульной трубке оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля. Согласно способу измерения избыточной длины оптического волокна в модульной трубке оптического кабеля характеристики обратного...
Тип: Изобретение
Номер охранного документа: 0002644032
Дата охранного документа: 07.02.2018
09.06.2018
№218.016.5d6b

Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Способ применения роя беспилотных летательных аппаратов для...
Тип: Изобретение
Номер охранного документа: 0002656281
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5d73

Способ развертывания фазированной антенной решетки

Изобретение относится к антенной технике и может быть использовано для оперативного развертывания фазированной антенной решетки. В некотором пространстве размещают блоки автономного питания, приемо-передающие блоки и элементы фазированной антенной решетки, соединяют отдельные блоки и элементы с...
Тип: Изобретение
Номер охранного документа: 0002656285
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5de3

Способ поиска трассы и определения места повреждения оптического кабеля

Изобретение относится к измерительной технике, а именно к способу поиска трассы и определения места повреждения оптического кабеля. В оптическое волокно вводят модулированный зондирующий сигнал, над кабелем продольно-поперечно относительно предполагаемой трассы кабеля перемещают источник...
Тип: Изобретение
Номер охранного документа: 0002656295
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5e29

Способ формирования киральной структуры

Изобретение относится к радиотехнике и технике КВЧ и СВЧ и может быть использовано для формирования в пространстве структуры с киральными свойствами, в частности малотражающей экранирующей структуры. Сущностью изобретения является расширение области применения. Эта сущность достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002656288
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5e2a

Способ определения трассы прокладки и локализации места повреждения кабеля

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки и/или расположенных в многопроводной системе в условиях сложной электромагнитной обстановки. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002656283
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5e36

Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Технический результат: расширение области применения. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002656287
Дата охранного документа: 04.06.2018
19.07.2018
№218.016.720d

Способ определения трассы прокладки и локализации места повреждения кабеля

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки. Сущность изобретения заключается в том, что способ определения трассы прокладки и локализации места повреждения...
Тип: Изобретение
Номер охранного документа: 0002661551
Дата охранного документа: 17.07.2018
19.08.2018
№218.016.7deb

Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте

Изобретение относится к измерительной технике и может быть использовано для дистанционного поиска трасс подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте. Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного...
Тип: Изобретение
Номер охранного документа: 0002664253
Дата охранного документа: 15.08.2018
+ добавить свой РИД