×
26.08.2017
217.015.dddf

Результат интеллектуальной деятельности: Способ дистанционного оптического зондирования неоднородной атмосферы

Вид РИД

Изобретение

Аннотация: Способ дистанционного оптического зондирования неоднородной атмосферы содержит этап посылки в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении. На основании сигналов определяют характеристики неоднородной атмосферы по их мощностям. Также уменьшают область зондирования путем осуществления посылки световых импульсов по дополнительным трассам, поочередно, под углами наклона, меньшими и большими угла наклона на заданную точку. Также осуществляют посылку световых импульсов по дополнительным третьим трассам, проходящим через точки пересечения трасс, в которых определяют характеристики атмосферы. Технический результат заключается в повышении точности определений за счет корректного установления связи коэффициента обратного рассеяния и коэффициента ослабления. 1 ил.

Изобретение относится к области метеорологии, а более конкретно к способам определения оптических характеристик атмосферы, и может использоваться, например, для измерения прозрачности атмосферы лидарами при определении аэрозольного загрязнения воздуха.

Известен способ дистанционного оптического зондирования неоднородной атмосферы [1], при котором осуществляют посылку в атмосферу светового импульса малой длительности и регистрацию рассеянного в обратном направлении света, преобразованного в электрические сигналы. В этом способе осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении, определения характеристик неоднородной атмосферы по мощностям сигналов, принятых и накопленных, с использованием расчетных формул, уменьшения областей зондирования и повторения процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы.

Этот известный способ обладает недостаточной точностью, поскольку он основан на предположении о существовании связи коэффициента обратного рассеяния и коэффициента ослабления на исследуемой трассе зондирования. Это предположение не выполняется в условиях реальной неоднородной атмосферы.

Наиболее близким к предлагаемому изобретению является известный способ определения характеристик неоднородной атмосферы [2], при котором осуществляют посылку в неоднородную атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении, определения характеристик неоднородной атмосферы по мощностям сигналов, принятых и накопленных, с использованием расчетных формул, уменьшения областей зондирования путем осуществления посылки световых импульсов по дополнительным трассам, поочередно, под углами наклона, меньшими и большими угла наклона дополнительной трассы, проходящей через заданную точку, и повторения процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы.

В этом известном решении повышена точность определения характеристик загрязнения неоднородной атмосферы благодаря использованию точек посылки в атмосферу световых импульсов, разнесенных в пространстве, и осуществлению посылки световых импульсов по дополнительным трассам, поочередно, под углами наклона, меньшими и большими угла наклона дополнительной трассы, проходящей через заданную точку.

Однако в решении [2] не учитывается возможность существования в процессе измерений значительной неопределенности связи коэффициента обратного рассеяния и коэффициента ослабления.

Техническим результатом изобретения является повышение точности определения характеристик атмосферы за счет корректного установления связи коэффициента обратного рассеяния и коэффициента ослабления.

В предлагаемом способе используют некоторые существенные признаки прототипа, а именно: в нем осуществляют посылку в неоднородную атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении, определения характеристик неоднородной атмосферы по мощностям сигналов, принятых и накопленных, с использованием расчетных формул, уменьшения областей зондирования путем осуществления посылки световых импульсов по дополнительным трассам, поочередно, под углами наклона, меньшими и большими угла наклона на заданную точку, и повторения процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы.

Существенными отличительными признаками предлагаемого способа является то, что осуществляют посылку световых импульсов по дополнительным третьим трассам из точек посылки импульсов, проходящим через точки проходящим через точки пересечения трасс, в которых определяют характеристики атмосферы.

Оптические характеристики загрязнения неоднородной атмосферы, в частности,

находят в общих точках многоугольников из систем уравнений, записанных для сторон многоугольников, образованных пересечением трасс зондирования

где

мощность сигнала обратного рассеяния, скорректированная на геометрический фактор лидара,

Pi, j - мощность сигнала обратного рассеяния,

- геометрический фактор лидара,

β - коэффициент обратного рассеяния,

σ - коэффициент ослабления,

m=1/g, причем определяется и постоянная g в степенной связи коэффициента обратного рассеяния с коэффициентом ослабления,

- радиус-вектор точки посылки световых импульсов и приема сигналов обратного рассеяния (i-й точке расположения приемопередатчика соответствует радиус-вектор ),

- радиус-вектор зондируемого рассеивающего элемента,

- текущий радиус-вектор точки прямой, проходящей через точки i, j,

ci - отрезок , по которому вычисляются интегралы,

dr - элемент длины отрезка.

Сущность изобретения пояснена на чертеже. На фиг. 1 представлена схема посылок зондирующих импульсов и приема эхо-сигналов для примера трех приемопередатчиков (лидаров).

Способ реализуют следующим образом.

Приемопередатчики 1, 2 и 3 располагают с разнесением в пространстве в точках , и.

Осуществляют посылку в атмосферу световых импульсов из точек, , разнесенных в пространстве, по трассам, пересекающимся в заданной точке .

Осуществляют посылку импульсов из точки по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения : областей зондирования, которые ограничены, например, точками i=1, 2, 3, i=2, 5, 6.

При этом осуществляют посылку импульсов, поочередно, под углами наклона, меньшими и большими угла наклона, зависящего от точек , , например, соответственно, область зондирования, ограниченная точками i=1, 2, 3, и область зондирования, ограниченная точками i=2, 5, 6.

Принимают сигналы (5), рассеянные в обратном направлении, определяют характеристики неоднородной атмосферы по мощностям сигналов, принятых и накопленных в соответствии с формулой (4) с использованием расчетных формул (1)-(5). Уменьшают области зондирования, например, область зондирования, ограниченной точками i=1, 2, 3. Повторяют процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы z2 в заданной точке , что означает достижение требуемой точности. Посылают дополнительный третий импульс из точки на объем и дополнительный третий импульс из точки на объем . Таким образом, посылают дополнительные импульсы в направлении на точки пересечения трасс, в которых определяют искомые характеристики. При этом формируются дополнительные области, например, , , , что позволяет повысить точность определения искомых характеристик.

Указанные существенные отличия позволяют повысить точность из-за учета возможности существования в процессе измерений значительной неопределенности связи коэффициента обратного рассеяния и коэффициента ослабления.

Физические принципы, на которых основаны измерения предлагаемым способом, состоят в том, что измеренные мощности эхо-сигналов связаны с оптическими характеристиками неоднородной атмосферы известным лидарным уравнением. На основе этого уравнения разработаны новые, ранее не использовавшиеся расчетные алгоритмы для определения оптических характеристик. В этих алгоритмах корректно учтены влияющие факторы.

Пример реализации способа

В пунктах , и , находящихся на одной прямой, размещают лидары 1, 2 и 3 на основе ЛИБО. Излучение зондирующих импульсов осуществляется на рабочей длине волны 0,69 мкм в окне прозрачности водяного пара. Энергия в импульсе 0.07-0.1 Дж. Длительность импульса 30 нс. Расстояние между лидарами 1, 2 и 2, 3 не превышает 0.5 км. Зондирование неоднородной атмосферы осуществляется в вертикальной плоскости, проходящей через линию размещения лидаров.

Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , и, дополнительно, через точку , лидаром 2 - через точки , и, дополнительно через точки, , ; лидаром 3 - через точки , , , , , с образованием треугольной области зондирования под углами наклона, меньшими угла наклона дополнительной трассы, проходящей через и заданную точку .

Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , , лидаром 2 - через точки , ; лидаром 3 - через точки , с образованием дополнительной треугольной области зондирования под углами наклона, большими угла наклона дополнительной трассы, проходящей через и заданную точку .

Осуществляют посылку световых импульсов лидаром 1 по трассе, проходящей через точки , , лидаром 2 - через точки , ; лидаром 3 - через точки , с образованием дополнительной треугольной области зондирования под углами наклона, меньшими угла наклона дополнительной трассы, проходящей через и заданную точку , а также дополнительных треугольных областей с вершинами в точках 1, 2, 4 и 2, 5, 6, а также 1, 5, 7, что позволяет повысить точность определения искомых характеристик.

Эти треугольные области зондирования общую точку . Кроме того, имеется возможность определить оптические характеристики, например, в точке .

Продолжают осуществлять посылку импульсов, поочередно, под углами наклона, меньшими и большими угла наклона дополнительной трассы, проходящей через и заданную точку

В точках посылки осуществляют прием эхо-сигналов:

в точке от отрезков, ограниченных точками: , и , ;

в точке от отрезков, ограниченных точками: , и , , а также , и , ;

в точке от отрезков, ограниченных точками: , и , , а также , ;

Принятые эхо-сигналы накапливают в соответствии с формулой (4). Продолжают осуществлять прием эхо-сигналов.

Определяют характеристики неоднородной атмосферы z2 из уравнений (2).

Измерения имеют требуемую точность в случаях, когда результаты, полученные по расчетным формулам (2), отличаются друг от друга для последовательных измерений в пределах величины заданной погрешности, в данном случае ±30%.

Обоснование существенности признаков. Как следует из описания, каждый из указанных признаков необходим, а вся их неразрывная совокупность достаточна для достижения технического результата - повышения точности измерений за счет более корректного учета влияющих факторов.

Обоснование изобретательского уровня. Заявляемый способ был проанализирован на соответствие критерию «изобретательский уровень». Для этого были исследованы близкие признаки известных решений как в данной, так и в смежных областях техники. Так по источнику [3] был выявлен признак приема эхо-сигналов от общего рассеивающего объема неоднородной атмосферы. Однако в этом известном решении [3] общий рассеивающий объем атмосферы принадлежит лишь трассам зондирования, проходящим не менее чем по трем неколлинеарным направлениям. Именно благодаря такому осуществлению посылок в атмосферу световых импульсов из точек, разнесенных в пространстве, достигается технический результат способа [3]. В заявляемом же способе общий рассеивающий объем атмосферы принадлежит областям зондирования, имеющим общие трассы и рассеивающие объемы на них, разнесенные на сравнительно большое расстояние за счет посылки импульсов, поочередно, под углами наклона, меньшими и большими угла наклона дополнительной трассы, проходящей через заданную точку. При этом осуществляют посылку световых импульсов по дополнительным третьим трассам, проходящим через точки пересечения трасс, в которых определяют характеристики атмосферы.

Таким образом, по мнению заявителя и авторов, предлагаемое техническое решение способа оптического зондирования неоднородной атмосферы в своей неразрывной совокупности признаков является новым, явным образом не следует из уровня техники и позволяет получить важный технический результат - повышение точности определений за счет более корректного учета влияющих факторов.

Источники информации

1. АС №1597815 А1, МКИ5 G01W 1/00. Способ определения показателя ослабления атмосферы // Егоров А.Д., Емельянова В.Н. - Опубл. 07.10.1990, бюл. изобр. №37.

2. Патент №2473931. Способ оптического зондирования неоднородной атмосферы // Егоров А.Д., Потапова И.А., Ржонсницкая Ю.Б., Саноцкая Н.А. - Опубликовано: 27.01.2013, бюл. №3 (прототип).

3. АС №966639. Способ определения оптических характеристик рассеивающих сред / Сергеев Н.М., Кугейко М.М. Ашкинадзе Д.А. Бюллетень изобретений №38, 1982.

Способ дистанционного оптического зондирования неоднородной атмосферы путем посылки в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении, определения характеристик неоднородной атмосферы по мощностям сигналов, принятых и накопленных, с использованием расчетных формул, уменьшения областей зондирования путем осуществления посылки световых импульсов по дополнительным трассам, поочередно, под углами наклона, меньшими и большими угла наклона на заданную точку, и повторения процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы, отличающийся тем, что осуществляют посылку световых импульсов по дополнительным третьим трассам, проходящим через точки пересечения трасс, в которых определяют характеристики атмосферы.
Способ дистанционного оптического зондирования неоднородной атмосферы
Способ дистанционного оптического зондирования неоднородной атмосферы
Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
27.11.2015
№216.013.93eb

Способ специализированного гидрометеорологического прогнозирования для обеспечения безопасности железнодорожного транспорта

Изобретение относится к способам специализированного гидрометеорологического прогнозирования и может быть использовано для прогнозирования температуры рельса. Сущность: с помощью мезомасштабной модели WRF моделируют изменения гидрометеорологических параметров. Для этого в качестве фонового...
Тип: Изобретение
Номер охранного документа: 0002569486
Дата охранного документа: 27.11.2015
20.04.2016
№216.015.3557

Способ идентификации поверхности морских течений по ко-поляризационным спутниковым радиолокационным изображениям

Изобретение относится к области океанографии и может быть использовано для определения характеристик поверхностных морских течений. Сущность: двухполяризационные радиолокационные изображения трансформируют в два новых изображения, которые несут информацию о спектре коротких Брэгговских...
Тип: Изобретение
Номер охранного документа: 0002581395
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.6d56

Способ измерения векторного поля скорости океанских и речных течений в космическом рса

Способ измерения векторного поля скорости протяженной поверхности относится к радиолокации поверхности Земли с космических аппаратов и может быть использован для одновременного формирования яркостных и векторно-скоростных портретов речных и океанских течений с необходимым пространственным...
Тип: Изобретение
Номер охранного документа: 0002597148
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8bb0

Способ определения изменения суммарных многолетних влагозапасов в почвогрунтах речных бассейнов

Изобретение относится к области частично инфинитной гидрологии и может быть использовано для определения изменения суммарных влагозапасов в почвогрунтах речных бассейнов. Сущность: измеряют годовые осадки, речной сток, температуру и влажность воздуха. С учетом результатов указанных...
Тип: Изобретение
Номер охранного документа: 0002604479
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a34e

Способ определения дисперсного состава аэрозоля

Изобретение относится к области метеорологии и касается способа определения дисперсионного состава аэрозоля. При проведении измерений поляризованное излучение разделяют и одну из частей отклоняют и измеряют. Другую часть поляризованного излучения направляют на области, не пропускающие...
Тип: Изобретение
Номер охранного документа: 0002607050
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c5ca

Способ аспирационной оптической спектрометрии аэрозоля

Изобретение относится к области метеорологии. Способ аспирационной оптической спектрометрии аэрозоля включает направление поляризованного излучения на задерживающую область, перед которой его экранируют. Направленное излучение фокусируют в счетном объеме, находящемся перед экраном, и измеряют...
Тип: Изобретение
Номер охранного документа: 0002618597
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.e309

Способ оценки водозапаса облаков над океаном по данным измерений спутникового микроволнового радиометра amsr2

Изобретение относится к области метеорологии и может быть использовано для оценки водозапаса облаков над океаном. Сущность: получают значения радиояркостных температур по четырем радиометрическим каналам, имеющим частоты 18,7 ГГц горизонтальной поляризации, 23,8 ГГц вертикальной поляризации,...
Тип: Изобретение
Номер охранного документа: 0002626165
Дата охранного документа: 21.07.2017
10.05.2018
№218.016.475c

Способ определения прозрачности неоднородной атмосферы

Способ определения прозрачности неоднородной атмосферы включает посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по трем неколлинеарным направлениям, с образованием отрезками между точками их пересечения двух...
Тип: Изобретение
Номер охранного документа: 0002650797
Дата охранного документа: 17.04.2018
03.10.2018
№218.016.8cd7

Способ предсказания и оценки аномально высоких волн, генерируемых движущимися погодными системами

Изобретение относится к области физической океанографии и может быть использовано для предсказания и оценки аномально высоких волн, генерируемых движущимися погодными системами. Сущность: для заданных значений радиального распределения скорости ветра и скорости перемещения циклона определяют...
Тип: Изобретение
Номер охранного документа: 0002668337
Дата охранного документа: 28.09.2018
Показаны записи 11-20 из 24.
27.11.2015
№216.013.93eb

Способ специализированного гидрометеорологического прогнозирования для обеспечения безопасности железнодорожного транспорта

Изобретение относится к способам специализированного гидрометеорологического прогнозирования и может быть использовано для прогнозирования температуры рельса. Сущность: с помощью мезомасштабной модели WRF моделируют изменения гидрометеорологических параметров. Для этого в качестве фонового...
Тип: Изобретение
Номер охранного документа: 0002569486
Дата охранного документа: 27.11.2015
20.04.2016
№216.015.3557

Способ идентификации поверхности морских течений по ко-поляризационным спутниковым радиолокационным изображениям

Изобретение относится к области океанографии и может быть использовано для определения характеристик поверхностных морских течений. Сущность: двухполяризационные радиолокационные изображения трансформируют в два новых изображения, которые несут информацию о спектре коротких Брэгговских...
Тип: Изобретение
Номер охранного документа: 0002581395
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.6d56

Способ измерения векторного поля скорости океанских и речных течений в космическом рса

Способ измерения векторного поля скорости протяженной поверхности относится к радиолокации поверхности Земли с космических аппаратов и может быть использован для одновременного формирования яркостных и векторно-скоростных портретов речных и океанских течений с необходимым пространственным...
Тип: Изобретение
Номер охранного документа: 0002597148
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8bb0

Способ определения изменения суммарных многолетних влагозапасов в почвогрунтах речных бассейнов

Изобретение относится к области частично инфинитной гидрологии и может быть использовано для определения изменения суммарных влагозапасов в почвогрунтах речных бассейнов. Сущность: измеряют годовые осадки, речной сток, температуру и влажность воздуха. С учетом результатов указанных...
Тип: Изобретение
Номер охранного документа: 0002604479
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a34e

Способ определения дисперсного состава аэрозоля

Изобретение относится к области метеорологии и касается способа определения дисперсионного состава аэрозоля. При проведении измерений поляризованное излучение разделяют и одну из частей отклоняют и измеряют. Другую часть поляризованного излучения направляют на области, не пропускающие...
Тип: Изобретение
Номер охранного документа: 0002607050
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c5ca

Способ аспирационной оптической спектрометрии аэрозоля

Изобретение относится к области метеорологии. Способ аспирационной оптической спектрометрии аэрозоля включает направление поляризованного излучения на задерживающую область, перед которой его экранируют. Направленное излучение фокусируют в счетном объеме, находящемся перед экраном, и измеряют...
Тип: Изобретение
Номер охранного документа: 0002618597
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.e309

Способ оценки водозапаса облаков над океаном по данным измерений спутникового микроволнового радиометра amsr2

Изобретение относится к области метеорологии и может быть использовано для оценки водозапаса облаков над океаном. Сущность: получают значения радиояркостных температур по четырем радиометрическим каналам, имеющим частоты 18,7 ГГц горизонтальной поляризации, 23,8 ГГц вертикальной поляризации,...
Тип: Изобретение
Номер охранного документа: 0002626165
Дата охранного документа: 21.07.2017
10.05.2018
№218.016.3ba6

Способ определения содержания витамина к в продуктах растительного происхождения

Изобретение относится к способам количественного определения биологически активных веществ в растительном сырье и получаемых на его основе продуктах питания, а именно к способу определения содержания витамина К в продуктах растительного происхождения, и может быть использовано в химической,...
Тип: Изобретение
Номер охранного документа: 0002647451
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.475c

Способ определения прозрачности неоднородной атмосферы

Способ определения прозрачности неоднородной атмосферы включает посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим по трем неколлинеарным направлениям, с образованием отрезками между точками их пересечения двух...
Тип: Изобретение
Номер охранного документа: 0002650797
Дата охранного документа: 17.04.2018
01.03.2019
№219.016.d046

Способ оптического зондирования атмосферы

Изобретение относится к области метеорологии, а именно к способам определения характеристик загрязнения. Согласно способу осуществляют посылку в неоднородную атмосферу световых импульсов из точек, разнесенных в пространстве, по пересекающимся трассам зондирования, проходящим не менее чем по...
Тип: Изобретение
Номер охранного документа: 0002441261
Дата охранного документа: 27.01.2012
+ добавить свой РИД