×
26.08.2017
217.015.dda9

Результат интеллектуальной деятельности: Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Вид РИД

Изобретение

№ охранного документа
0002624893
Дата охранного документа
07.07.2017
Аннотация: Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и прочностью на уровне 180 ÷ 400 кгс/мм. Слой реголита имеет плотность 3,0 ± 0,3 г/сми толщину δ=0,5 ÷ 0,75 м. Размеры оболочки в форме параллелепипеда составляют δ×2δ×3δ. Согласно способу, обносят защищаемый объект несущей структурой, которую перекрывают металлической сеткой. На поверхность сетки укладывают встык по крайней мере в два слоя оболочки, заполненные реголитом. Стыки между оболочками нижнего слоя перекрывают оболочками верхнего слоя. Техническим результатом, обусловленным применением реголита, является повышение надежности, технологичности и уменьшение материалоемкости средств защиты искусственных объектов. 2 н.п. ф-лы, 8 ил.

Изобретение относится к космической технике, а именно, к средствам и технологиям защиты искусственных объектов от вредного воздействия факторов космического пространства, таких как радиация, экстремальные температуры и микрометеороиды в природных условиях Луны.

Колонизация Луны в исторической перспективе неизбежно будет содержать доставку с Земли и/или строительство сооружений различного назначения: жилых, лабораторных, ангарно-ремонтных, производственных и т.п., которые должны быть защищены от повреждений и разрушения, а люди, в них находящиеся, - от опасной радиации, излишнего тепла, холода и микрометеороидной опасности.

В комплексе инженерных задач, которые предстоит решить при подготовке к освоению Луны, есть такая, от решения которой будет зависеть успех всего предприятия, а именно: противостояние радиационной опасности, которая особенно велика на «беззащитной» безатмосферной Луне. Ведется поиск материалов и конструктивных решений для достижения необходимого уровня защиты. Противорадиационные защитные свойства материалов характеризуются их удельной плотностью. При применении материалов с высокой удельной плотностью (металлы и сплавы), актуальным является требование по минимизации массы конструкций, доставляемых для этой цели с Земли, что значительно ограничивает такой подход. В этих обстоятельствах логично и целесообразно осуществить поиск возможностей применить для защиты или переработки в защитные средства местные лунные материалы. В настоящее время известно, что определенный слой лунного грунта - реголита, может служить защитой от вредных факторов космического пространства: радиации экстремальных температур и микрометеоритов (Луна - шаг к технологиям освоения солнечной системы. / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 210).

Реголит, покрывающей лунную поверхность, представляет собой рыхлый темно-серый тонкозернистый порошок с включениями отдельных более крупных зерен. Реголит легко слипается в отдельные рыхлые комки. Несмотря на заметную слипаемость, он обладает неустойчивой, легко нарушаемой структурой, что происходит без всякого внешнего воздействия.

Свойства реголита определяются такими характеристиками, как плотность, пористость и толщина покрывающего слоя. Плотность (удельная масса) лунного реголита зависит от химического и минералогического состава. Пористость лунного реголита определяется свободным пространством между отдельными частицами (межзеренная пористость) и свободным пространством внутри частиц. Пористость оказывает прямое влияние на величину плотности реголита.

Изучение доступных источников дает ряд незначительно отличающихся значений плотности поверхностного слоя реголита. Среднее значение плотности лунного реголита принимается 1,5 г/см3 (Луна - шаг к технологиям освоения солнечной системы/Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 79-80).

Противорадиационные свойства реголита. Большая часть солнечных лучей не проникает в лунное вещество глубже, чем на несколько сантиметров. Наличие слоя в несколько г/см3 достаточно для полного затухания реакций в лунном веществе. Слой около 100 г/см3 обычно служит достаточной преградой для проникновения потока тяжелых ядер галактических лучей, которые обычно не проникают в лунные породы глубже 10 см. Реальное исследование показало, что использование слоя реголита толщиной 2-3 м может служить защитой от влияния космической радиации (Луна - шаг к технологиям освоения солнечной системы. / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 277).

Теплопроводность реголита. Температурные условия на Луне:

- максимальная дневная температура…+130°C;

- максимальная ночная температура… - 150°C.

Низкая отражательная способность лунного поверхностного слоя приводит к тому, что около 90% падающей на Луну солнечной радиации переходит в тепло. Низкая теплопроводность лунного грунта способствует тому, что на глубине 1 м температура реголита не претерпевает существенных изменений. На глубине 35 см суточное колебание температуры составляет 6 К и полностью затухает на глубине 80 см. Реголит, в силу его низкой теплопроводности, может служить защитой от резкого перепада температур при толщине слоя 1-3 м (Луна - шаг к технологиям освоения солнечной системы / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 210).

Противомикрометеоритные свойства реголита. Поток пылевидных частиц с массой 10-13 г и скоростью падения 25 км/с при плотности потока 2⋅108 см-2 с-1 (число падающих частиц на квадратный сантиметр поверхности за секунду) может задерживаться слоем реголита 1-3 м (Луна - шаг к технологиям освоения солнечной системы / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 210). Физика явлений, возникающих при проникновении частицы в пористый, сыпучий материал, иная, чем при ударах о твердое тело. В пористом веществе частица, действуя как поршень, сжимает перед собой материал и сначала закрывает поры, а потом движется как бы в сплошном материале. При закрытии пор резко возрастает температура (до 10 К). Тепловое давление, подобно давлению высоконагретого газа, замедляет и останавливает проникновение частицы. Противоударные свойства сыпучих структур подтверждены реально в военных защитных средствах в виде мешков с песком, в которых задерживаются пули значительно большей массы, чем микрометеориты.

Сжимаемость в рыхлом насыпном состоянии является существенным свойством реголита. Плотность грунта в рыхлом насыпном состоянии, доставленного "Луной-16", оказалась равной 1,115 г/см3, а после уплотнения вибрацией, ударами и трамбованием - 1,793 г/см3, чему соответствуют коэффициенты пористости 1,7 и 0,67. Плотность грунта, доставленного "Луной-20", в рыхлом насыпном состоянии составляла 1,04 г/см3, а после уплотнения виброударным методом - 1,792 г/см3, чему соответствуют коэффициенты пористости 1,82 и 0,67 (И.И. Черкасов, В.В. Швырев. Грунтоведение Луны. Издательство "Наука". Москва. 1979. С. 136-137).

Известны проекты, в которых используется лунный грунт в качестве защитного материала.

Погружение и/или засыпка реголитом непосредственно корпуса защищаемого объекта (О.С. Цыганков. Концептуальная модель формирования лунной исследовательской станции // Полет. 12. 2008. С. 15) неприемлема ввиду наличия на внешней поверхности функционирующих агрегатов.

Рассматриваются возможности использования особенностей рельефа, в частности, «лавовых трубок» (подповерхностных каналов лавовых потоков) для размещения в них модулей лунной базы (Луна - шаг к технологиям освоения солнечной системы / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 384). Геометрия этих образований, прочность покрывающего слоя, да и само их существование достаточно неопределенны.

Изучается возможность использования монолитного лунобетона или производство строительных блоков, сформированных из реголита методами гидратации, автоклавирования и спекания (О.С. Цыганков. Концептаульная модель формирования лунной исследовательской станции // Полет. 12. 2008. С. 15). Эти технологии потребуют значительного количества воды и чрезвычайно высокого энергоснабжения, что на начальном этапе освоения Луны не будет доступно.

Возможно применение подходов подземной урбанистики в варианте заглубленного размещения защищаемых модулей в котловане траншейного типа с эскарпами (пологими съездами). Для случая плоского горизонтального перекрытия траншеи, засыпка вызовет чрезмерную нагрузку и высокие требования к прочности и устойчивости перекрытия. Известно устройство куполообразных перекрытий из гофрированных металлических листов массой до 10 тонн под засыпку слоем реголита массой 2600 тонн (Луна - шаг к технологиям освоения солнечной системы / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 282). Потребный объем засыпки выше уровня поверхности будет зависеть не только от толщины защитного слоя, но и от естественного угла откоса реголита. Для перекрытий под обратную засыпку и укрепление откосов может быть применена технология с использованием пилообразных сварных тонколистовых стальных металлоконструкций толщиной 0,1-0,3 мм с несущими балками, трансформируемыми наддувом за счет химических газообразователей (фиг. 8) (О.С. Цыганков. Концептуальная модель формирования лунной исследовательской станции // Полет. 12. 2008. С. 15). Указанные подходы сопряжены с огромной трудоемкостью строительства.

Известно предложение, согласно которому заранее изготовленную опалубку можно заполнить реголитом и уплотнить. Можно изготовленные панели заполнять реголитом уже в процессе сборки самих сооружений. (В.В. Шевченко. Лунная база // М. Знание. Космонавтика и астрономия. №6. 1991. С. 6). Заполнение панелей реголитом в процессе сборки сооружений крайне нетехнологично, особенно при увеличении числа и типоразмеров защищаемых объектов. Данное предложение, как аналог, содержит тривиальную для земных условий технологию, технически и экономически нерациональную для реализации на Луне. Изготовление опалубки, последующее наполнение ее грунтом и его уплотнение потребует чрезмерно больших трудозатрат и высокой материалоемкости.

В качестве прототипа средства и способа защиты искусственных объектов от воздействия факторов космического пространства принята статья автора данной заявки (О.С. Цыганков. Концептуальная модель формирования лунной исследовательской станции // Полет. №12. 2008. С. 15), где описано использование реголита, расфасованного в мягкие емкости и обкладывание ими защищаемых объектов. Способ защиты искусственных объектов от воздействия факторов космического пространства заключается в обнесении защищаемого объекта несущим каркасом, который служит основой для укладки на нее пакетов с реголитом. Недостатками прототипа являются неприспособленность к массовому промышленному производству, большие трудозатраты и материалоемкость средства защиты искусственных объектов от воздействия факторов космического пространства.

Самоценность реголита, как защитного материала, побуждает к поиску рациональных форм и способов его использования, основанных на свойствах и количественных характеристиках реголита.

Задачей изобретения является создание эффективного, надежного средства защиты от воздействия факторов космического пространства с использованием лунного реголита, обладающего высокой заводской готовностью и монтажной технологичностью с минимальными материало- и трудоемкостью.

Техническим результатом изобретения является обеспечение эффективности, надежности, приспособленности к массовому промышленному производству, высокой заводской готовности, монтажной технологичности, минимизации трудозатрат и материалоемкости средства защиты искусственных объектов от воздействия факторов космического пространства использованием реголита с необходимым уровнем защиты.

Технический результат достигается тем, что средство защиты искусственных объектов от воздействия факторов космического пространства состоит из оболочки, заполненной реголитом, причем оболочка изготовлена из материала на основе стекловолокна с пределами рабочих температур -200÷+550°C и прочностью 180÷400 кгс/мм2, слой реголита, сформированный в оболочке, имеет плотность 3,0±0,3 г/см3, толщина слоя реголита δ=0,5÷0,75 м, при этом оболочка имеет форму параллелепипеда с размерами сторон δ×2δ×3δ (фиг. 1).

Технический результат достигается также и тем, что способ защиты искусственных объектов от воздействия факторов космического пространства включает обнесение защищаемого объекта несущей структурой, несущую структуру перекрывают металлической сеткой, на поверхность которой укладывают встык между собой средства защиты в виде оболочек, заполненных реголитом, при этом оболочки укладывают, по крайней мере, в два слоя с перекрытием стыков между оболочками нижележащего слоя оболочками верхнележащего слоя (фиг. 2 и 3).

При средней плотности реголита 1,5 г/см3 достаточна толщина защитного слоя реголита 2-3 м (Луна - шаг к технологиям освоения солнечной системы / Под редакцией В.П. Легостаева. М.: РКК "Энергия". 2011. С. 277). При использовании реголита плотностью 3,0±0,3 г/см3, т.е. в 2 раза больше средней природной плотности, толщина защитного слоя реголита может быть снижена в 2 раза, т.е. до 1,0-1,5 м. При использовании реголита в виде раздельных слоев, например, двух, толщина слоя может быть δ=0,5÷0,75 м. Наличие не менее двух слоев оболочек обосновано требованием перекрывать стыки между оболочками нижележащего слоя оболочками вышележащего слоя (фиг. 2).

Предполагается промышленно-заводское производство средств защиты, например, путем упаковки реголита в оболочки в форме параллелепипеда с размерами сторон δ×2δ×3δ по образцу упаковки цемента или сахара-песка (фиг. 1). Машины и агрегаты для такого производства существуют и могут быть адаптированы для лунных условий. Плотность реголита 3,0±0,3 г/см3 может быть достигнута уплотнением за счет высокой сжимаемости реголита, например, виброударным методом (И.И. Черкасов, В.В. Швырев. Грунтоведение Луны. Издательство "Наука". Москва. 1979. С. 137).

Форма оболочки в виде параллелепипеда с размерами сторон δ×2δ×3δ обусловлена необходимостью обеспечить гибкость оболочки при укладке на криволинейные, например, цилиндрические поверхности с радиусом R≥28, что подтверждено на экспериментальном макете оболочки, заполненной сыпучим материалом (фиг. 2).

Сущность изобретения поясняется графическими материалами на фиг. 1-8.

На фиг. 1 показано средство защиты в виде оболочки, заполненной реголитом.

На фиг. 2-3 показан способ защиты искусственных объектов от воздействия факторов космического пространства с применением вышеуказанного средства защиты.

На фиг. 4-7 показаны примеры способа защиты с помощью предложенного средства защиты.

На фиг. 8 представлена несущая структура.

На фигурах введены следующие обозначения:

1 - оболочка;

2 - наполнитель из реголита;

3 - сетка типа «рабица»;

4 - несущая структура;

5 - корпус защищаемого объекта.

Средство защиты искусственных объектов от воздействия факторов космического пространства (фиг. 1) содержит оболочку 1, выполненную, из материала на основе стекловолокна, например, стеклоткани ЭЗ-200 по ГОСТ19907-83 и ТУ5952-002-995544202-2011, с пределами рабочих температур -200÷+550°C (steklotkan-story.ru/steklotkani) и прочностью 180÷400 кгс/мм2 (С.М. Алексеев, С.П. Усманский / Высотные космические скафандры. Москва, «Машиностроение», 1973. С. 200, 247), заполненную реголитом 2 с плотностью 3,0±0,3 г/см3, толщина слоя реголита 2, сформированного в оболочке 1, δ=0,5÷0,75 м при суммарной толщине слоев реголита 1,0÷1,5 м, оболочка 1 имеет форму параллелепипеда с размерами сторон δ×2δ×3δ.

Способ защиты искусственных объектов от воздействия факторов космического пространства включает обнесение защищаемого объекта несущей структурой 4, представляющей собой, например, каркас из плоскосвернутых труб, трансформируемых (раздуваемых) за счет давления химических газообразователей (фиг. 8), которую перекрывают металлической сеткой 3 (например, сеткой типа «рабица», ГОСТ 5336-80. Технические условия (http//:www.metalgost.ru), на поверхность сетки 3 укладывают встык между собой средства защиты в виде оболочек 1, заполненных реголитом 2, при этом оболочки 1 укладывают не менее, чем в два слоя с перекрытием стыков между оболочками 1 нижележащего слоя оболочками 1 верхнележащего слоя при суммарной толщине слоев реголита 1,0÷1,5 м. Укладку оболочек производят с помощью роботизированных средств.

Изобретение открывает широкие возможности для промышленно-заводского массового изготовления средств защиты. Технологическая цепочка изготовления предложенных средств защиты выглядит следующим образом:

- зачистка площади от крупных камней;

- грохочение (просеивание от средних фракций);

- подача в шаровую мельницу (при необходимости - по состоянию грунта);

- подача на виброконвейер и уплотнение массы реголита до плотности 3,0±0,3 г/см3;

- подача в фасовочный агрегат для упаковки по типу цемента или сахара-песка, при этом оболочку, используемую для упаковки реголита, изготавливают из материала на основе стекловолокна с пределами рабочих температур -200÷+550°С и прочностью 180÷400 кгс/мм2, с размерами сторон δ×2δ×3δ; заполнением оболочки формируют слой реголита толщиной δ=0,5÷0,75 м с плотностью 3,0÷0,3 г/см3;

- получают средство защиты в виде оболочки, заполненной реголитом, в форме параллелепипеда с размерами сторон δ×2δ×3δ.

Целевое использование оболочек, заполненных реголитом, реализуемо в различных вариантах строительный конструкций (фиг. 4-7):

- укладка непосредственно на корпус защищаемого объекта (фиг. 4);

- защищаемый объект на поверхности обносится несущей структурой, перекрывается крупноячеистой сеткой, доставляемой в рулоне, на которую укладываются защитные оболочки (фиг. 5);

- полупогруженное положение защищаемого объекта, упрощенная несущая структура и сетка на ней для укладки защитных оболочек (фиг. 6);

- погруженное положение защищаемого объекта, горизонтальное перекрытие с сеткой для укладки защитных оболочек (фиг. 7).

Строительство защитных конструкций может быть сопряжено с использованием валов кратеров, скальных образований и т.д. Агрегаты и строительная техника для реализации техпроцессов изготовления и монтажа защитных оболочек существуют в виде наземных образцов и могут быть адаптированы для лунных условий. Строительство защитных сооружений на основе технологии оболочек, заполненных реголитом (варианты наименований: защитный пакет (ЗП), лунопротектор (ЛП)), представляется оптимально-перспективным высокотехнологичным методом освоения и колонизации Луны.


Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Средство и способ защиты искусственных объектов от воздействия факторов космического пространства
Источник поступления информации: Роспатент

Показаны записи 121-130 из 372.
20.03.2015
№216.013.3252

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе ее сборки на соответствие техническим требованиям....
Тип: Изобретение
Номер охранного документа: 0002544357
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3552

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков, стыковочными механизмами, направляющими узлами со штырем с заходным конусом и гнездом с...
Тип: Изобретение
Номер охранного документа: 0002545134
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.38da

Посадочное устройство космического аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в посадочных устройствах (ПУ) космических аппаратов (КА). ПУ КА содержит стойку, состоящую из стакана с внутренним амортизирующим элементом, соединенного с цилиндрическим шарниром и телескопически с подвижным штоком,...
Тип: Изобретение
Номер охранного документа: 0002546042
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.38f5

Дипольная антенна

Изобретение относится к антенной технике, в частности к дипольным антеннам с отражающим экраном с полунаправленной диаграммой направленности, и может быть использовано в технике связи для приема сигналов навигационных систем и для организации приемо-передающего канала с Землей в...
Тип: Изобретение
Номер охранного документа: 0002546069
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3db6

Система контроля скорости космических аппаратов при сближении

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к оптико-электронным системам контроля скорости. Система контроля скорости космических аппаратов при сближении включает расположенные на активном космическом...
Тип: Изобретение
Номер охранного документа: 0002547286
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4012

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (KA), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547890
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4016

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547894
Дата охранного документа: 10.04.2015
Показаны записи 121-130 из 312.
27.02.2015
№216.013.2d3c

Электролизная установка космического назначения и способ ее эксплуатации

Изобретение относится к электролизной установке космического назначения, включающей электролизный модуль с выходными пневмомагистралями кислорода и водорода, снабженными конденсаторами пара, выполненными из пористого гидрофильного материла и имеющими водоотвод в окружающую среду, резервуар с...
Тип: Изобретение
Номер охранного документа: 0002543048
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d73

Ионный двигатель

Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем...
Тип: Изобретение
Номер охранного документа: 0002543103
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ed0

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус (1), установленные внутри него электродвигатель (5), датчик (6) углового положения, связанный с выходным валом электропривода, и...
Тип: Изобретение
Номер охранного документа: 0002543452
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ee9

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков и стыковочными механизмами, пружинные толкатели, штыри с заходными конусами, гнезда с...
Тип: Изобретение
Номер охранного документа: 0002543477
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f1b

Способ измерения скорости движения объектов по их телевизионным изображениям

Изобретение относится к области прикладного телевидения с использованием регистрации излученного или отраженного лучистого потока от объектов в разных зонах оптического спектра для решения задач контроля и анализа состояния объектов по их телевизионным (ТВ) изображениям. Изобретение может найти...
Тип: Изобретение
Номер охранного документа: 0002543527
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f37

Трехканальный релейный коммутатор

Изобретение относится к электронным устройствам автоматики. Технический результат заключается в повышении надежности и помехоустойчивости. Устройство содержит: три входа, первый из которых через параллельно соединенные первую и вторую обмотки реле подключен к источнику питания, второй вход...
Тип: Изобретение
Номер охранного документа: 0002543555
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3252

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе ее сборки на соответствие техническим требованиям....
Тип: Изобретение
Номер охранного документа: 0002544357
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
+ добавить свой РИД