×
26.08.2017
217.015.dc7b

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится метрологии, в частности к технике измерения тепловых параметров светодиодов. Через светодиод пропускают последовательность импульсов греющего тока I, широтно-импульсно модулированную по гармоническому закону, с частотой модуляции Ω и глубиной модуляции ; во время действия импульсов греющего тока измеряют напряжение на светодиоде и центральную длину волны излучения светодиода с известным температурным коэффициентом Κ, по результатам измерения определяют амплитуду первой гармоники греющей мощности Р(Ω), потребляемой светодиодом, и амплитуду первой гармоники центральной длины волны излучения светодиода , а также сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за период модуляции мощность оптического излучения светодиода, и модуль теплового импеданса находят по формуле а фазу ϕ(Ω) теплового импеданса светодиода определяют как разность фаз между первой гармоникой центральной длины волны излучения светодиода и первой гармоникой греющей мощности. Технический результат - повышение точности измерения теплового импеданса. 2 ил.

Изобретение относится к технике измерения тепловых параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов.

Известен способ измерения теплового сопротивления полупроводниковых диодов, заключающийся в том, что на контролируемый диод подают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра (ТЧП), например, прямого напряжения UТЧП диода при пропускании через него малого измерительного тока (ГОСТ 19656, 18-84. Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления).

Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения UТЧП(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения (Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. - М: Сов. радио, 1980. - С. 51).

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового импеданса светоизлучающих диодов (Пат. RU 2556315 РФ МПК G01R 31/00. Способ измерения теплового импеданса светодиодов / Сергеев В.А., Смирнов В.И. - Заявка 2013101864/28, заявл. 15.01.2013, опубл. 10.07.2015, бюл. №19), состоящий в том, что через светодиод пропускают последовательность импульсов греющего тока Iгр, широтно-импульсно модулированную по гармоническому закону с глубиной модуляции а; в промежутках между импульсами греющего тока через светодиод пропускают малый постоянный начальный ток, по результатам измерения напряжения на диоде во время действия импульсов греющего тока и в промежутках между ними определяют амплитуду первой гармоники мощности Pm1(Ω), потребляемой светодиодом, и амплитуду первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом KTU - прямого напряжения на светодиоде при протекании через него малого постоянного начального тока, и сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, дополнительно измеряют среднюю мощностьоптического излучения светодиода и модуль теплового импеданса находят по формуле

а фаза ϕΤ(Ω) теплового импеданса светодиода будет равна сдвинутой на 180° разности фаз между первой гармоникой температурочувствительного параметра и первой гармоникой мощности.

Недостатком известного способа является большая погрешность измерения ТЧП из-за переходных процессов при переключении светодиодов из режима нагрева рабочим током в режим измерения. По этой причине верхняя частота частотного диапазона измерения теплового импеданса СИД известным способом ограничена длительностью этих переходных процессов и не превышает 1 кГц.

Технический результат - повышение точности измерения теплового импеданса и повышение верхней частоты диапазона измерения

Технический результат достигается тем, что через светодиод пропускают последовательность импульсов греющего тока Iгр, широтно-импульсно модулированную по гармоническому закону с частотой модуляции Ω и глубиной модуляции а; во время действия импульсов греющего тока измеряют напряжение на светодиоде и центральную длину волны излучения светодиода с известным температурным коэффициентом K, по результатам измерения определяют амплитуду первой гармоники мощности Рm1(Ω), потребляемой светодиодом, и амплитуду первой гармоники центральной длины волны излучения светодиода, а также сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за период модуляции мощностьоптического излучения светодиода и модуль теплового импеданса находят по формуле

а фазу ϕT (Ω) теплового импеданса светодиода определяют как разность фаз между первой гармоникой центральной длины волны излучения светодиода и первой гармоникой мощности.

Повышение точности измерения модуля теплового импеданса светодиода достигается за счет того, что в качестве ТЧП используется центральная длина волны излучения светодиода, которая, как известно (Шуберт, Ф. Светодиоды / Ф. Шуберт; пер. с англ. под ред. А.Э. Юновича. - М.: ФИЗМАТЛИТ, 2008. - 496 с.) линейно возрастает с увеличением температуры с постоянным температурным коэффициентом. Температурный коэффициент K обусловлен фундаментальными свойствами полупроводникового материала гетероструктуры и слабо зависит от параметров режима работы светодиода. При этом на изменение этого параметра переходные электрические процессы никакого влияния не оказывают. ШИМ модуляция тока через светодиод по гармоническому закону с заданной глубиной модуляции обеспечивает изменение мощности, потребляемой светодиодом, по закону, близкому к гармоническому, где - постоянная составляющая (среднее значение) греющей мощности, Uд - напряжение на диоде при протекании через него греющего тока заданной амплитуды, Рm1=Im1Uд - первая гармоника греющей мощности, Im1=аIгр - первая гармоника греющего тока. Через некоторое время, превышающее три постоянных времени переход-корпус светодиода, в светодиоде установится регулярный режим и температура р-n-перехода светодиода будет пульсировать относительно некоторого квазистационарного значения, где - установившееся среднее значение температуры перехода, - переменная составляющая температуры перехода светодиода, изменяющаяся по закону, близкому к гармоническому: , ϕT - сдвиг фаз между изменением греющей мощности и изменением температуры. Центральная длина волны излучения будет «отслеживать» измерение температуры именно активной области (гетероперехода) светодиода и будет изменяться также по закону, близкому к гармоническому: , где - центральная длина излучения при средней температуре перехода; , - первая гармоника переменной составляющей изменения центральной длины волны излучения.

Современные средства измерения центральной длины излучения узкополосных оптических сигналов имеют быстродействие порядка 3-5 мкс (см., например, Ульянов, А.В. Методы и средства оперативного контроля параметров спектра узкополосного оптического излучения /А.В. Ульянов, В.А. Сергеев, Рогов В.Н. // Автоматизация процессов управления. - 2015. - №4. - С. 75-80). При этом случайная погрешность, обусловленная шумами фотоприемников, уменьшается в результате фильтрации полезного сигнала при определении первой гармоники. Следует отметить также, что измерение центральной длины производится в те же моменты времени, в которые производится измерение напряжения на светодиоде, что позволяет упростить реализацию способа в конкретных устройствах.

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 1. Эпюры напряжений и сигналов, поясняющие сущность способа и алгоритм работы устройства, приведены на фиг. 2.

Устройство содержит контакты 1 для подключения контролируемого светодиода, генератор греющих импульсов тока 2, устройство управления 3, управляемый аналого-цифровой преобразователь (АЦП) 4, делитель светового потока 5, управляемый измеритель 6 центральной длины волны излучения с цифровым выходом, измеритель оптической мощности 7 с цифровым выходом и вычислитель 8 с индикатором.

Устройство работает следующим образом. После установки светодиода в контактную колодку 1 напротив входного отверстия делителя светового потока 5, после подачи команды «Запуск» на устройство управления 3 по сигналам этого устройства генератор импульсов 2 начинает вырабатывать последовательность греющих импульсов тока заданной амплитуды Im и постоянной частоты ƒсл, которые подаются в контролируемый светодиод. Моменты времени tk=kТсл начала k-го импульса и его длительность τuku0(1+asinΩtk) определяются управляющими импульсами UУ1 (фиг. 2, а) и UУ2 (фиг. 2, б) устройства управления; в результате светодиод будет разогреваться последовательностью импульсов греющего тока Iгр, широтно-импульсно модулированной по гармоническому закону с частотой модуляции Ω и глубиной модуляции а (фиг. 2, в). Через некоторое время, превышающее три постоянных времени переход-корпус светодиода, в светодиоде установится регулярный режим и температура р-n-перехода светодиода будет пульсировать относительно некоторого квазистационарного значения (фиг. 2, г), изменяющегося по гармоническому закону. Напряжение на светодиоде во время протекания импульсов тока (фиг. 2, д) по сигналам UУ3 устройства управления 3 в моменты времени, где Δtот1 некоторое фиксированное время задержки (фиг. 2, е), управляемым АЦП 6 преобразуется в цифровой код. Цифровые отсчеты напряжения светодиода Uд(k) передаются в оперативную память вычислителя 8, где формируется массив значений прямого напряжения светодиода {Uд(k)}. В эти же моменты времени измеритель 6 центральной длины волны излучения преобразует в цифровой код ТЧП - центральную длину волны излучения светодиода (фиг. 2, ж). Цифровые отсчеты λ(k) передаются в оперативную память вычислителя 8, где формируется массив значений ТЧП - {λ(k)}. Значениесредней оптической мощности (фиг. 2, з) с выхода измерителя оптической мощности 7 по сигналу устройства управления передается в вычислитель 8 за несколько тактов до окончания измерения.

Вычислитель 8 вычисляет значения импульсной мощности для каждого k-го греющего импульса тока, путем умножения Uд(t) на значение амплитуды греющих импульсов тока Im:Pm(k)=Im⋅Uд(k) и формирует массив значений импульсной мощности {Рт(к)}. По массивам данных {Pm(k)} и {λ(k)} методом дискретного преобразования Фурье вычислитель 8 определяет амплитуду и фазу гармоник греющей мощности (Рm1 и ϕP) и ТЧП (и ϕT) соответственно и далее вычисляет модуль и фазу теплового импеданса полупроводникового диода по формулам:

ϕ=ϕTP. (3б)

Результат вычисления высвечивается на индикаторе.

Для повышения точности преобразование измеряемых величин осуществляют в течение нескольких (3÷5) периодов модуляции греющей мощности и получают N=(3÷5)ТМсл цифровых отсчетов измеряемых величин.


СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 111.
25.08.2017
№217.015.b08e

Способ измерения вертикального распределения скорости звука в воде

Изобретение относится к гидроакустической метрологии, в частности к способам измерения вертикального распределения скорости звука в воде. Способ предполагает излучение широкополосного импульса, прием отраженных сигналов на приемопередающую антенну с узкой характеристикой направленности,...
Тип: Изобретение
Номер охранного документа: 0002613485
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b09d

Способ измерения переходной тепловой характеристики цифровых интегральных схем

Использование: для контроля тепловых свойств цифровых интегральных схем. Сущность изобретения заключается в том, что способ заключается в разогреве цифровой интегральной схемы ступенчатой электрической греющей мощностью известной величины и в измерении в определенные моменты времени в процессе...
Тип: Изобретение
Номер охранного документа: 0002613481
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b7d2

Генератор свч шумовых колебаний

Изобретение относится к радиотехнике и может быть использовано при разработке аппаратуры миллиметрового диапазона волн различного назначения. Технический результат - повышение средней частоты спектра генерации шумовых колебаний в миллиметровом диапазоне волн. Генератор СВЧ шумовых колебаний...
Тип: Изобретение
Номер охранного документа: 0002614925
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b800

Оптическая система электропитания электронных устройств

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах. Оптическая...
Тип: Изобретение
Номер охранного документа: 0002615017
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.be44

Способ определения напряжения локализации тока в мощных вч и свч биполярных транзисторах

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ согласно изобретению основан на использовании эффекта увеличения крутизны зависимости напряжения на эмиттерном...
Тип: Изобретение
Номер охранного документа: 0002616871
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf73

Функциональный элемент на магнитостатических спиновых волнах

Изобретение относится к устройствам СВЧ-электроники и может быть использовано при конструировании нано- и микроэлектронных элементов для обработки сигналов. Элемент на магнитостатических спиновых волнах (МСВ) имеет две пары микрополосковых преобразователей, которые образуют два параллельных...
Тип: Изобретение
Номер охранного документа: 0002617143
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c2ad

Твердотельный источник электромагнитного излучения

Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала. Рабочий слой твердотельного источника...
Тип: Изобретение
Номер охранного документа: 0002617732
Дата охранного документа: 26.04.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc0d

Способ определения добротности механической колебательной системы

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы. Способ определения добротности механической колебательной системы, снабженной датчиком положения, заключается в том, что экспериментально определяют частоту собственных...
Тип: Изобретение
Номер охранного документа: 0002624411
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dcc2

Быстродействующий измеритель амплитуды квазисинусоидальных сигналов

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте. Быстродействующий измеритель амплитуды...
Тип: Изобретение
Номер охранного документа: 0002624413
Дата охранного документа: 03.07.2017
Показаны записи 51-60 из 74.
25.08.2017
№217.015.c2ad

Твердотельный источник электромагнитного излучения

Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала. Рабочий слой твердотельного источника...
Тип: Изобретение
Номер охранного документа: 0002617732
Дата охранного документа: 26.04.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc0d

Способ определения добротности механической колебательной системы

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы. Способ определения добротности механической колебательной системы, снабженной датчиком положения, заключается в том, что экспериментально определяют частоту собственных...
Тип: Изобретение
Номер охранного документа: 0002624411
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dcc2

Быстродействующий измеритель амплитуды квазисинусоидальных сигналов

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте. Быстродействующий измеритель амплитуды...
Тип: Изобретение
Номер охранного документа: 0002624413
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e379

Устройство для непрерывного неинвазивного измерения кровяного давления

Изобретение относится к медицинской технике. Устройство для непрерывного неинвазивного измерения кровяного давления содержит установленный в корпусе (11) аппликатор (10), выполненный в виде заполненной жидкостью (15) полости (12) с гибкой мембраной (13) для обеспечения механического контакта с...
Тип: Изобретение
Номер охранного документа: 0002626319
Дата охранного документа: 25.07.2017
29.12.2017
№217.015.f0ae

Криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приёмных систем

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из...
Тип: Изобретение
Номер охранного документа: 0002638964
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fa06

Способ измерения переходной тепловой характеристики полупроводниковых изделий

Использование: для контроля тепловых характеристик полупроводниковых приборов и интегральных схем. Сущность изобретения заключается в том, что разогревают полупроводниковое изделие путем подачи на вход (на определенные выводы) полупроводникового изделия, подключенного к источнику питания,...
Тип: Изобретение
Номер охранного документа: 0002639989
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fc24

Пневматический сенсор для непрерывного неинвазивного измерения артериального давления

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством...
Тип: Изобретение
Номер охранного документа: 0002638712
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.073d

Свч-способ измерения концентрации водных растворов

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002631340
Дата охранного документа: 21.09.2017
19.01.2018
№218.016.0c15

Чувствительный элемент для акустического жидкостного сенсора

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой...
Тип: Изобретение
Номер охранного документа: 0002632575
Дата охранного документа: 06.10.2017
+ добавить свой РИД