×
26.08.2017
217.015.dc1e

Результат интеллектуальной деятельности: Ракетный двигатель малой тяги на газообразных водороде и кислороде со щелевой форсункой

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ракетных двигателей малой тяги. Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из головки двигателя, свечи зажигания топлива, системы подачи компонентов топлива в камеру сгорания и внутреннего охлаждения камеры сгорания, при этом для подачи окислителя в камеру сгорания применена щелевая форсунка, установленная с возможностью направления окислителя к оси двигателя. Изобретение способствует интенсивному перемешиванию водорода и кислорода и более полному их сгоранию. 1 ил.

Изобретение относится к области ракетных двигателей малой тяги (РДМТ), работающих на газообразных водороде (Н2) и кислороде (O2) в качестве исполнительных органов систем управления объектов ракетно-космической техники.

Особенно эффективны такие двигатели в составе двигательных установок космических аппаратов на основе электролиза воды и РДМТ на газообразных водороде и кислороде - продуктах электролиза воды.

Известен ракетный двигатель малой тяги (диссертация на соискание кандидата технических наук «Рабочие процессы в ракетном двигателе малой тяги на газообразных компонентах топлива кислород и метан» Чудиной Юлии Сергеевны, Московский авиационный институт. Москва, 2014, http://www.mai.ru/events/defence/index.php?ELEMENT_ID=49826, стр. 51), в котором форкамера (иначе - предкамера) для воспламенения компонентов топлива образована уменьшенным проходным сечением центрального отверстия. Непосредственный подвод компонентов топлива в область свечи зажигания отсутствует, воспламенение топлива происходит при попадании компонентов из камеры сгорания в разрядную полость свечи.

Недостатком является и то, что в таком двигателе добиться высокой стабильности процесса воспламенения и высокой полноты сгорания топлива невозможно, учитывая предложенную организацию процесса воспламенения и малые объемы камеры сгорания (малые времена пребывания топлива в камере сгорания), так как компоненты топлива в газообразном состоянии за счет диффузии перемешиваются сравнительно медленно. Увеличение объема камеры сгорания нерационально из-за ухудшения динамических параметров двигателя, проблем обеспечения теплового состояния камеры и увеличения весовых параметров РДМТ.

Наиболее близким аналогом является двигатель на газообразных водороде и кислороде для вспомогательных установок космической станции (Эппель М.А., Шёман Л., Беркман Д.К. «Двигатель на газообразных водороде и кислороде для вспомогательных установок космической станции». 1987, аннотация реферата. «Представлены результаты работ по созданию высокоэффективного двигателя малой тяги на газообразных водороде и кислороде. Проведено исследование воспламенения и охлаждения. Камера сгорания - рениевая. Способ подачи водорода и кислорода происходит с помощью шести осевых струй, направленных радиально к центральному электроду»).

Недостатком этого технического решения является неоптимальная по составу смесь водорода и кислорода, которую нужно воспламенять при работе двигателя, особенно в импульсном режиме и неэффективное перемешивание водорода и кислорода при горении.

Технической задачей настоящего изобретения является увеличение полноты сгорания газообразных водорода и кислорода в ракетных двигателях малой тяги.

Задача решается за счет того, что в ракетном двигателе малой тяги на газообразных водороде и кислороде, состоящем из головки двигателя, свечи зажигания топлива, системы подачи компонентов топлива в камеру сгорания и внутреннего охлаждения камеры сгорания, для подачи окислителя в камеру сгорания применена щелевая форсунка, установленная с возможностью направления окислителя к оси двигателя.

Сущность изобретения поясняется чертежом, где схематично представлен ракетный двигатель малой тяги со щелевой форсункой. На чертеже изображены:

свеча зажигания поверхностного разряда 1, разрядная полость 2 свечи зажигания, диафрагма 3, каналы 4, камера 5, в которую поступает водород, камера 6, в которую поступает закрученный кислород, коллектор окислителя 7, щель конусообразная 8 для подачи окислителя в камеру сгорания, каналы подачи водорода для внутреннего охлаждения камеры сгорания 9, центробежная форсунка горючего 10, вектор скорости окислителя 11, вектор скорости горючего 12, камера сгорания 13, докритическая часть сопла 14.

Работа двигателя осуществляется следующим образом.

Смесительная головка имеет центральную центробежную форсунку водорода 10, соосную с ней щелевую форсунку кислорода 8 и периферийные каналы 9 для охлаждения стенки камеры сгорания и сопла. После включения электроклапанов водорода и кислорода (на чертеже не показаны) водород и кислород по каналам 4 поступают в разрядную полость 2 свечи зажигания поверхностного разряда 1. В разрядной полости 2 водород и кислород воспламеняются и в виде факела продуктов сгорания через диафрагму 3 поступают в камеру 5, в которую поступает закрученный водород, далее смесь продуктов сгорания и водорода поступает в камеру 6, в которую поступает закрученный кислород и в которой завершается процесс формирования факела топливной смеси водорода и кислорода. Затем в камере сгорания 13 воспламеняется и сгорает основная топливная смесь.

Основная топливная смесь готовится следующим образом.

Из коллектора окислителя 7 окислитель поступает в конусообразную щелевую форсунку 8, из которой окислитель поступает в камеру сгорания 13, а вектор потока окислителя 11 направлен к оси двигателя.

Из центробежной форсунки водорода 10 и щелевой форсунки окислителя 8 в камеру сгорания 13 поступают водород и кислород, векторы скорости которых 11 и 12 образуют два пересекающихся потока: водорода - от оси двигателя и к периферии кислорода - под углом к оси двигателя.

Пересечение этих потоков способствует интенсивному перемешиванию водорода и кислорода, которые под воздействием факела из камеры 6 воспламеняются и сгорают. Далее продукты сгорания движутся в докритической части сопла 14, сверхкритической части сопла и истекают из сопла, создавая тягу двигателя. Для предотвращения прогара стенки камеры сгорания и сопла применяется внутреннее охлаждение водородом с помощью каналов 9.

Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из головки двигателя, свечи зажигания топлива, системы подачи компонентов топлива в камеру сгорания и внутреннего охлаждения камеры сгорания, отличающийся тем, что для подачи окислителя в камеру сгорания применена щелевая форсунка, установленная с возможностью направления окислителя к оси двигателя.
Ракетный двигатель малой тяги на газообразных водороде и кислороде со щелевой форсункой
Ракетный двигатель малой тяги на газообразных водороде и кислороде со щелевой форсункой
Источник поступления информации: Роспатент

Показаны записи 21-30 из 35.
10.05.2018
№218.016.473e

Способ изготовления горлышка тонкостенного сосуда (варианты) и устройство для его осуществления

Изобретение относится к области изготовления металлических сосудов, в частности к изготовлению профилированного горлышка с опорным буртиком тонкостенного металлического сосуда. Способ заключается в установке кольцевого буртика на горлышко сосуда. Буртик представляет собой шайбу, внутренний...
Тип: Изобретение
Номер охранного документа: 0002650657
Дата охранного документа: 16.04.2018
18.05.2018
№218.016.51c6

Способ получения пористого слоя гетероструктуры карбида кремния на подложке кремния

Изобретение относится к области микроэлектронной технологии, а именно к способу получения полупроводниковой гетероструктуры карбида кремния на кремниевой подложке. Формируют слой карбида кремния с помощью атомов кристаллической решетки кремниевой подложки и атомов углерода, при этом...
Тип: Изобретение
Номер охранного документа: 0002653398
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.5336

Устройство для отделения наноспутников с заданными параметрами от сегмента мкс

Изобретение относится к космической технике и может быть использовано для выведения наноспутников на заданные траектории и с заданными скоростями с борта космических станций. Устройство отделения наноспутников состоит из электромеханической системы запуска магнитоиндукционного типа и...
Тип: Изобретение
Номер охранного документа: 0002653666
Дата охранного документа: 11.05.2018
02.08.2018
№218.016.77e2

Динамический испаритель твердых растворов

Изобретение относится к области формирования тонких пленок сложного состава в вакууме и может быть использовано в микроэлектронике. Испаритель твердых растворов, используемый для формирования тонких пленок в вакууме, содержит корпус в виде стакана и заслонку в виде крышки, внутренняя часть...
Тип: Изобретение
Номер охранного документа: 0002662914
Дата охранного документа: 31.07.2018
Тип: Изобретение
Номер охранного документа: 0002665789
Дата охранного документа: 04.09.2018
15.12.2018
№218.016.a78e

Устройство для малоракурсной томографической диагностики параметров индуцированных плазменных образований в условиях ближнего космоса

Изобретение относится к оптической томографии, физике космических лучей и может быть использовано для определения трехмерных функций распределения различных параметров низкотемпературной плазмы, индуцированной газовым разрядом вокруг исследуемого объекта в условиях влияния космических факторов...
Тип: Изобретение
Номер охранного документа: 0002675079
Дата охранного документа: 14.12.2018
07.02.2019
№219.016.b7bc

Способ бесконтактного определения технического состояния зубчатых колес и устройство для его реализации

Предлагаемое изобретение предназначено для контроля технического состояния зубчатых колес и может быть использовано для диагностики рабочего состояния редукторных систем в процессе их эксплуатации. Способ бесконтактного контроля рабочего состояния редукторных систем в процессе их эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002678929
Дата охранного документа: 04.02.2019
29.04.2019
№219.017.3e28

Способ нанесения двухслойного покрытия на детали газотурбинного двигателя

Изобретение относится к нанесению двухслойного покрытия и может быть использовано при повышении эксплуатационных свойств деталей, например, в авиадвигателестроении. Способ нанесения двухслойного покрытия на детали газотурбинного двигателя включает напыление подслоя из никель-алюминиевого сплава...
Тип: Изобретение
Номер охранного документа: 0002686429
Дата охранного документа: 25.04.2019
19.06.2019
№219.017.83d0

Микрохроматограф с бинарными колонками на плоскости

Изобретение относится к газовой хроматографии и может быть использовано для эффективного экспресс-анализа сложных смесей веществ природного и техногенного происхождения. Микрохроматограф содержит сменные независимо управляемые аналитические модули для анализа компонентов сложных смесей, каждый...
Тип: Изобретение
Номер охранного документа: 0002691666
Дата охранного документа: 17.06.2019
02.10.2019
№219.017.d0b4

Способ контроля целостности лопастей несущих винтов вертолёта в соосной схеме их расположения и устройство для его осуществления

Группа изобретений относится к способу и устройству контроля целостности лопастей несущих винтов вертолета в соосной схеме их расположения. Для реализации способа используют зондирующее излучение СВЧ диапазона для измерения колебательных параметров перемещения лопастей, фазовый метод...
Тип: Изобретение
Номер охранного документа: 0002700535
Дата охранного документа: 17.09.2019
Показаны записи 21-25 из 25.
20.06.2019
№219.017.8d8a

Устройство для измерения массы жидких компонентов топлива при работе ракетных двигателей малой тяги в режиме одиночных включений и в импульсных режимах

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство для измерения массы жидких компонентов топлива при работе ракетного двигателя малой тяги в режиме одиночных включений и в импульсных режимах, состоящее из электропневмоклапана, градуированных стеклянных...
Тип: Изобретение
Номер охранного документа: 0002691873
Дата охранного документа: 18.06.2019
27.06.2019
№219.017.986b

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в стационарном режиме работы

Изобретение относится к испытаниям жидкостных ракетных двигателей малой тяги. Устройство состоит из упругой балки с двумя силоизмерительными датчиками (весоизмерительным и задающим), на которой крепится испытуемое изделие и измерительный датчик, узла подвеса, силозадающего устройства...
Тип: Изобретение
Номер охранного документа: 0002692591
Дата охранного документа: 25.06.2019
25.01.2020
№220.017.f9ef

Тягоизмерительное устройство для испытаний жидкостных ракетных двигателей малой тяги в импульсных режимах работы

Изобретение относится к испытательным стендам для жидкостных ракетных двигателей малой тяги (ЖРДМТ). Тягоизмерительное устройство состоит из корпуса, выполненного в виде круговой балки, упругих элементов, представляющих собой радиально ориентированные лепестки прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002711813
Дата охранного документа: 23.01.2020
06.02.2020
№220.017.fff4

Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации

Способ измерения массы газа при работе ракетного двигателя малой тяги в режиме одиночных включений, в импульсных режимах и устройство для его реализации. Предложены способ и устройство для измерения массы газов (водорода Н и кислорода O) при огневых испытаниях ракетных двигателей малых тяг при...
Тип: Изобретение
Номер охранного документа: 0002713308
Дата охранного документа: 04.02.2020
24.06.2020
№220.018.29f1

Ракетный двигатель малой тяги на несамовоспламеняющихся жидком горючем и газообразном окислителе

Изобретение относится к области ракетно-космической техники, а именно к ракетным двигателям малой тяги на несамовоспламеняющихся газообразном окислителе и жидком горючем. Ракетный двигатель содержит агрегат зажигания и свечу, электропневмоклапаны окислителя «О» и горючего «Г», смесительную...
Тип: Изобретение
Номер охранного документа: 0002724069
Дата охранного документа: 19.06.2020
+ добавить свой РИД