×
26.08.2017
217.015.dc11

Результат интеллектуальной деятельности: Способ ультразвукового контроля твердости полимеров

Вид РИД

Изобретение

Аннотация: Использование: для определения твердости по Шору полимера. Сущность изобретения заключается в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, с измерением скорости их распространения и коэффициента затухания, зависящего от расстояния между поверхностями излучателя и приемника, для каждого конкретного испытуемого образца, с дальнейшим их преобразованием в электрический сигнал с амплитудой, зависящей от свойств образца. Одновременно с подачей и приемом ультразвуковых колебаний электронным штангенциркулем измеряют толщину образца, затем определяют константы, индивидуальные для полимера одной марки при заданной частоте измерения и толщине испытуемого образца, после чего определяют твердость полимера по Шору по заданной математической формуле. Технический результат: обеспечение возможности ультразвукового определения твердости полимеров по Шору. 2 ил., 1 табл.

Изобретение относится к области диагностики полимеров неразрушающими методами и может быть использовано для определения твердости полимеров по Шору в шинной промышленности и промышленности синтетического каучука.

Твердость по Шору - один из методов измерения твердости материалов и используется для измерения твердости низкомодульных материалов, как правило, полимеров: пластмасс, эластомеров, каучуков и продуктов их вулканизации.

Метод позволяет измерять глубину начального вдавливания, глубину вдавливания после заданных периодов времени или и то и другое вместе. Метод является эмпирическим испытанием, поэтому не существует простой зависимости между твердостью, определяемой с помощью данного метода, и каким-либо фундаментальным свойством испытуемого материала.

Широкое распространение нашел способ определения структуры, упругих свойств или состава материалов по изменению величины затухания ультразвуковых волн либо по изменению скорости их распространения в исследуемом теле [а.с. СССР № 77708].

Этот способ предложен для определения характеристик металлов и неточен при определении свойств и состава полимерных материалов.

Известен способ определения физико-механических характеристик, включающий излучение импульсов ультразвуковых колебаний (УЗК) излучателем, прием импульсов, прошедших в конструкции, приемником, измерение скорости их распространения в плоскости конструкции и затухания УЗК путем измерения сдвига основных составляющих спектра принятых многократно прошедших по толщине импульсов относительно излученных, по которым, используя ранее полученные уравнения регрессии или тарировочные графики, построенные на их основе, определяют искомые характеристики [а.с. СССР № 808930, БИ 8 - 81 г.].

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ ультразвукового контроля предела прочности полимеров при разрыве полимеров [патент РФ №2319957, заявка №2006107831/28 от 15.03.2006, МПК 7 G01N 29/00 - прототип].

Указанный способ ультразвукового контроля предела прочности при разрыве полимеров включает излучение импульсов ультразвуковых колебаний излучателем, прием импульсов, прошедших образец, приемником, измерение скорости их распространения и коэффициента затухания ультразвуковых колебаний, при этом в результате параметрической идентификации модели определяют значения коэффициентов P и m, индивидуальные для каждой марки полимера, и на основе измеренных параметров ультразвуковых колебаний рассчитывают предел прочности при разрыве образца полимера по формуле:

,

где σ - предел прочности при разрыве, кгс/см2; ρ - плотность полимера, кг/см3; h - толщина образца, см; с - скорость ультразвука, см/с; α - коэффициент затухания ультразвука, см-1; ω - частота ультразвуковых колебаний, с-1.

Недостатком данного способа является то, что этот способ не позволяет определять твердость полимера по Шору, Sh, т.е. имеет узкий диапазон применения.

Технической задачей изобретения является устранение указанных недостатков и создание способа ультразвукового определения твердости полимеров по Шору за счет использования измеренных скорости и коэффициента затухания ультразвуковых колебаний (УЗК).

Решение указанной задачи достигается тем, что в предложенном способе ультразвукового контроля твердости полимеров, заключающемся в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, после чего подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, с измерением скорости их распространения и определением коэффициента затухания, зависящего от расстояния между поверхностями излучателя и приемника, для каждого конкретного испытуемого образца, с дальнейшим их преобразованием в электрический сигнал с амплитудой, зависящей от свойств образца, согласно изобретению одновременно с подачей и приемом ультразвуковых колебаний, электронным штангенциркулем измеряют расстояние между поверхностями излучателя и приемника, равное толщине сжатого образца, затем определяют константы, индивидуальные для полимера одной марки при заданной частоте измерения и толщине испытуемого образца, после чего определяют твердость полимера по Шору по формуле:

Sh=B1/α+B2,

где Sh - твердость полимера по Шору, ед. Шора; α - коэффициент затухания, м-1; В1 и В2 - константы, определяемые методом наименьших квадратов экспериментально по измерениям коэффициента затухания α в полимере ультразвуковым способом Shэксп и эталонным методом Shэт (твердомером Шора тип А ТВР-А), в соответствии с критерием:

где i - номер опыта.

Сущность предложенного ультразвукового метода заключается в том, что, по коэффициенту затухания УЗК, зависящему от химического строения, структуры и молекулярной подвижности полимера, определяют твердость полимера.

Известно, что величина добротности (Q) колебательной системы «преобразователь - индентор - материал», по которой судят о твердости полимера, связана с коэффициентом затухания [Голямина И.П. Ультразвук, маленькая энциклопедия [Текст] / И.П. Голямина. - М.: Советская энциклопедия, 1979. - 400 с.]:

где ω - частота измерения; α - коэффициент затухания, м-1.

Поскольку добротность связана с коэффициентом затухания уравнением (2), то для перевода между различными единицами твердости можно использовать некоторые масштабные коэффициенты , В2:

где и В2 - константы, определяемые экспериментально методом наименьших квадратов при заданной частоте измерения и толщине испытуемого образца.

После преобразований связь твердости по Шору A (Sh, ед. Шор А) полимеров с акустическими характеристиками материала при некоторой фиксированной частоте излучения имеет вид:

где В1 и В2 - константы, определяемые экспериментально методом наименьших квадратов при заданной частоте измерения и толщине испытуемого образца.

Коэффициент/степень затухания ультразвука определяется по следующей формуле [Перепечко И.И. Акустические методы исследования полимеров [Текст] / И.И. Перепечко. - М.: Химия, 1973. - 296 с.]:

где Аизл - амплитуда сигнала на источнике излучения, В, Апр - амплитуда сигнала на приемнике, В, h - толщина образца, см.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показана блок-схема, реализующая предлагаемый способ, на фиг. 2 - график твердости с нанесенными экспериментальными и расчетными значениями.

Экспериментальные данные обозначены знаком «х», расчетные данные - «-».

В таблице 1 приведены экспериментальные и расчетные зависимости твердости по Шору от величины коэффициента затухания ультразвука.

На фиг. 1 обозначены: 1 - генератор, 2 - излучающий пьезопреобразователь, 3 - исследуемый образец, 4 - приемник, 5 - цифровой осциллограф, 6 - вычислительное устройство.

Предложенный способ может быть реализован следующим образом.

Исследуемый образец 3 помещают между излучателем 2 и приемником 4. С генератора 1 электрический сигнал определенной частоты и длительности подается на излучатель 2, ультразвуковой импульс с которого, пройдя образец 3, попадает в приемник 4 и преобразуется в электрический сигнал с амплитудой, зависящей от свойств образца. Электрические сигналы с генератора 1 и приемника 4 подаются на цифровой осциллограф 5, а затем данные с осциллографа подаются на вычислительное устройство 6. Электронным штангенциркулем измеряют толщину образца h и вводят в вычислительное устройство 6. После обработки данных осциллографа рассчитывается величина коэффициента затухания ультразвука и величина твердости полимера по Шору.

Пример конкретного применения способа

Для образцов марки полимера СКС-30 толщиной 2 мм, прозвучиваемых на частоте 2,5 МГц при температуре 293 K с амплитудой 28 В, в результате аппроксимации методом наименьших квадратов были получены значения коэффициентов B1=3158 и B2=49,8. Коэффициент корреляции равен 0,878, средняя абсолютная ошибка 1,79 ед. твердости по Шору, средняя относительная ошибка 3,5%, что говорит о тесной корреляционной связи и высокой точности определения твердости по Шору. Экспериментальные и расчетные зависимости твердости по Шору от величины коэффициента затухания ультразвука приведены в таблице 1 и на фиг. 2 соответственно.

В примере параметрическая идентификация осуществлена компьютерной обработкой данных экспериментов, проводившейся минимизацией целевой функции (суммы квадратов отклонений расчетных значений твердости по Шору от экспериментальных) численным методом градиента.

Использование предложенного технического решения позволит определять твердость полимеров по Шору ультразвуковым методом с использованием пары ультразвуковых пьезопреобразователей и данных о зависимости твердости по Шору полимера от коэффициента затухания ультразвука.


Способ ультразвукового контроля твердости полимеров
Способ ультразвукового контроля твердости полимеров
Источник поступления информации: Роспатент

Показаны записи 51-60 из 785.
27.05.2013
№216.012.4516

Способ обжига мелкозернистого материала

Изобретение относится к области обжига мелкозернистых материалов в печах с псевдоожиженным слоем. Способ включает предварительное псевдоожижение и последующий обжиг в печи, содержащей камеру подогрева с газораспределительной решеткой, снабженную питателем и соединенную с санитарным циклоном,...
Тип: Изобретение
Номер охранного документа: 0002483263
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4719

Разнотемпературная конденсационная камера

Изобретение относится к оборудованию для пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, содержащая нижнее днище, верхнее днище, холодную и горячую боковые стенки с устройствами обеспечения разности температур их наружных...
Тип: Изобретение
Номер охранного документа: 0002483781
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.471a

Установка для очистки воздуха

Изобретение относится к оборудованию для пылеулавливания. Установка для очистки воздуха, содержащая увлажнитель всасываемого воздуха, компрессор, увлажнитель сжатого воздуха, подогреватель, разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002483782
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4915

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Смесительная головка ЖРД содержит корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина, соосно-струйные форсунки,...
Тип: Изобретение
Номер охранного документа: 0002484289
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4985

Способ теплообмена газовых сред

Изобретение относится к промышленной теплоэнергетике и может быть использовано, в частности, для утилизации тепла газообразных вторичных энергетических ресурсов. Изобретение направлено на повышение эффективности работы теплообменника путем уменьшения потерь тепла при протекании рабочего...
Тип: Изобретение
Номер охранного документа: 0002484401
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4987

Регенеративный теплообменник

Изобретение относится к промышленной теплоэнергетике и может быть использовано, в частности, для утилизации тепла газообразных низко- и среднепотенциальных вторичных энергетических ресурсов. Регенеративный теплообменник с кипящим слоем содержит газовую и воздушную камеры с решетками для...
Тип: Изобретение
Номер охранного документа: 0002484403
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4988

Способ теплообмена газовых сред

Изобретение относится к промышленной теплоэнергетике. Предложен способ теплообмена газовых сред, например горячего газа и воздуха, при помощи регенеративного теплообменника с кипящим слоем, содержащим газовую и воздушную камеры с решетками для параллельного прохождения теплообменивающихся сред...
Тип: Изобретение
Номер охранного документа: 0002484404
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.499c

Способ неконтактного подрыва заряда

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ неконтактного подрыва заряда основан на обнаружении цели посредством зондирования пространства импульсным световым излучением двух и более излучателей и регистрации отраженного...
Тип: Изобретение
Номер охранного документа: 0002484424
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4d82

Способ обжига мелкозернистого материала

Изобретение относится к области обжига мелкозернистых материалов. Мелкозернистый материал подогревают и подсушивают в камере подогрева с последующим предварительным псевдоожижением и обжигом в печи. При этом печь содержит камеру подогрева с газораспределительной решеткой, снабженную питателем и...
Тип: Изобретение
Номер охранного документа: 0002485424
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.514e

Факельная горелка

Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения. Изобретение позволяет создать горелку, конструкция которой позволяет обеспечить улучшенные...
Тип: Изобретение
Номер охранного документа: 0002486407
Дата охранного документа: 27.06.2013
Показаны записи 51-60 из 628.
27.06.2013
№216.012.517f

Способ повышения осколочной эффективности поражающего элемента кассетного боеприпаса

Изобретение относится к боеприпасам, в частности к кассетным боеприпасам, в оболочке которых содержится множество отдельных поражающих элементов. Кассетный боеприпас содержит корпус, включающий цилиндрическую и донную части, взрывчатое вещество, взрыватель и локализаторы дробления корпуса на...
Тип: Изобретение
Номер охранного документа: 0002486456
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5180

Корпус поражающего элемента кассетного боеприпаса

Изобретение относится к боеприпасам, в частности к корпусам поражающих элементов кассетных боеприпасов. Корпус поражающего элемента содержит цилиндрическую и донную части, локализаторы дробления корпуса на осколки. Локализаторы выполнены в виде кольцевых канавок на внешней поверхности корпуса....
Тип: Изобретение
Номер охранного документа: 0002486457
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5181

Поражающий элемент кассетного боеприпаса

Изобретение относится к боеприпасам, в частности к поражающим элементам кассетных боеприпасов. Поражающий элемент кассетного боеприпаса содержит корпус, включающий цилиндрическую и донную части, взрывчатое вещество, взрыватель и локализаторы дробления корпуса на осколки. Локализаторы выполнены...
Тип: Изобретение
Номер охранного документа: 0002486458
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5182

Способ повышения осколочной эффективности корпуса поражающего элемента кассетного боеприпаса

Изобретение относится к боеприпасам, в частности к способу повышения осколочной эффективности корпуса поражающего элемента кассетного боеприпаса. Корпус кассетного боеприпаса содержит цилиндрическую и донную части. Способ заключается в выполнении локализаторов дробления корпуса на осколки в...
Тип: Изобретение
Номер охранного документа: 0002486459
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5183

Корпус поражающего элемента кассетного боеприпаса

Изобретение относится к боеприпасам, в частности к корпусам поражающих элементов кассетных боеприпасов. Корпус поражающего элемента кассетного боеприпаса содержит цилиндрическую и донную части, локализаторы дробления корпуса на осколки. Локализаторы выполнены в виде кольцевых канавок на внешней...
Тип: Изобретение
Номер охранного документа: 0002486460
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5784

Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя и соосно-струйная форсунка для реализации указанного способа

Изобретение относится к области энергетических установок, а именно к способам и устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Способ подачи компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002488012
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57c0

Поражающий элемент кассетного боеприпаса

Изобретение относится к кассетным боеприпасам, в частности к поражающим элементам кассетных боеприпасов. Поражающий элемент содержит корпус. Корпус включает цилиндрическую и донную части, локализаторы дробления на осколки. Локализаторы дробления выполнены в виде кольцевых канавок на внешней...
Тип: Изобретение
Номер охранного документа: 0002488072
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57c1

Корпус поражающего элемента кассетного боеприпаса

Изобретение относится к боеприпасам, в частности к корпусам поражающих элементов кассетных боеприпасов. Корпус поражающего элемента кассетного боеприпаса содержит цилиндрическую и донную части, локализаторы дробления корпуса на осколки. Локализаторы дробления выполнены в виде кольцевых канавок...
Тип: Изобретение
Номер охранного документа: 0002488073
Дата охранного документа: 20.07.2013
20.08.2013
№216.012.6124

Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к способам и устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Способ подачи компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002490500
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6125

Соосно-струйная форсунка

Изобретение относится к области энергетических установок, а именно - к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002490501
Дата охранного документа: 20.08.2013
+ добавить свой РИД