26.08.2017
217.015.daf0

Способ получения композиционного пористого биоактивного покрытия

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам напыления композиционных пористых биоактивных покрытий и может быть использовано для формирования покрытий на поверхности внутрикостных имплантатов, фильтрующих покрытий, носителей катализаторов. Способ получения композиционного пористого биоактивного покрытия включает напыление на подложку на первой стадии слоя металлического покрытия под углом к подложке более 45°, напыление на него на второй стадии слоя из того же металлического материала под углом к подложке менее 45° и напыление на полученные слои на третьей стадии биоактивного керамического слоя, при этом напыление слоев на всех трех стадиях осуществляют при температуре подложки 200-900°С, а биоактивный керамический слой на третьей стадии напыляют под углами 45-90° к поверхности слоя металлического покрытия, сформированного на второй стадии напыления. Техническим результатом изобретения является увеличение сдвиговой прочности композиционного покрытия при сохранении его пористости 10-60% и размера пор 10-600 мкм. 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области металлургии, а более конкретно к формированию пористых покрытий на поверхности, и может быть использовано для формирования покрытий на внутрикостных имплантатах, фильтрующих покрытиях, носителях катализаторов.

Известен способ напыления пористых покрытий в четыре стадии [Internationale WO 86|06617. 20 November 1986 (20.11.86). Coating of an Implant Body]. На первой стадии напыляют плотное металлическое титановое покрытие на подложку. На второй стадии напыляют пористое металлическое титановое покрытие за счет увеличения размера напыляемых частиц и уменьшения мощности плазмотрона. На третьей стадии напыляют смесь металлического и керамического биоактивного порошка гидроксиапатита для формирования переходного слоя. На четвертой стадии напыляют керамический биоактивный слой гидроксиапатита.

Покрытие, сформированное по данному способу, имеет следующие недостатки. Точечные контакты между сферическими частицами пористого титанового слоя, напыленного на второй стадии, определяют низкую прочность покрытия в целом. Размер пор ограничен, а сами поры имеют неблагоприятную форму: то расширяются, то сужаются. Это неблагоприятно для врастания и функционирования новой костной ткани. При напылении четвертого керамического слоя существенно уменьшается величина пористости и размер пор покрытия, напыленного на второй стадии. Эти недостатки существенно уменьшают эффективность использования таких покрытий на поверхности имплантатов. В результате покрытие разрушается в организме человека. Поэтому в ряде стран такие покрытия используются только с дополнительным цементом, несколько повышающим прочность покрытий, но полностью закрывающим поры.

Известен способ формирования композиционного покрытия, в котором первый плотный слой на подложку напыляют под углом соударения частиц с подложкой более 45° [Патент РФ "Способ получения покрытий" №2146302, 7 С23С 4/12, 10.03.2000, Бюл. №7]. Второй слой покрытия напыляют под углом к подложке меньше 45°. При напылении покрытия по данному способу формируется пористое покрытие в виде гребней и впадин, образуя трехмерное капиллярно-пористое покрытие. Основной объем пористого пространства расположен в таких покрытиях во впадинах. Отсутствие биоактивного слоя на поверхности покрытия увеличивает сроки врастания новой костной ткани в пористое пространство титанового покрытия.

Наиболее близким является способ получения композиционного пористого покрытия [патент РФ "Способ получения покрытий" №2423545, С23С 4/12, С23С 4/04. Дата публикации: 10.04.2012], включающий напыление слоя металлического материала под углом к подложке более 45° на первой стадии и напыление слоя из того же металлического материала под углом менее 45° - на второй стадии, отличающийся тем, что на дополнительной третьей стадии осуществляют напыление биоактивного керамического слоя под углом 90°, при этом напыление слоев осуществляют при температуре на 100-1000°C выше температуры плавления напыляемого материала и со скоростью напыляемых частиц 100-700 м/с.

При напылении керамического слоя по способу, описанному в прототипе, под углом 90° к положке, напыляемые частицы керамического порошка соударяются с поверхностью гребней второго слоя под углом менее 45°, что приводит к формированию пористости в керамическом слое и снижению его механических свойств, и к снижению прочности соединения композиционного покрытия с костной тканью. Для применений биоактивных композиционных покрытий необходимо кроме высоких значений пористости до 60% иметь высокие значения прочности этих покрытий.

Этот третий способ напыления пористого покрытия приняли в качестве прототипа.

Задачей изобретения является: способ повышения механических свойств всех слоев композиционного покрытия, в том числе биоактивного керамического покрытия при максимальной плотности керамического покрытия.

Техническим результатом изобретения является повышение сдвиговой прочности композиционного покрытия в целом при сохранении его пористости покрытия 10-60% и размера пор 10-600 мкм.

Технический результат достигается тем, что способ получения композиционного пористого биоактивного покрытия, включающий напыление на первой стадии под углом к подложке более 45° и на второй стадии под углом к подложке менее 45° и напыление керамического покрытия на третьей стадии, согласно изобретению напыление керамического слоя покрытия на третьей стадии ведут под углами 45-90° к поверхности слоя металлического покрытия, сформированного на второй стадии, с нагревом подложки на всех стадиях напыления до 200-900°C.

Получаемый технический результат можно объяснить тем, что подогрев подложки до 200-900°C позволяет повысить прочность всех трех слоев покрытия, а получение прочного керамического слоя на третей стадии объясняется дополнительным фактором, напылением плотного керамического покрытия под углами 45-90° к поверхности слоя металлического покрытия.

В предлагаемом способе на первой стадии процесса напыляют плотный металлический слой под углом более 45°, на второй стадии процесса под углом к подложке менее 45° напыляют пористое покрытие в виде гребней и впадин. Пористость второго слоя покрытия определяет пористость покрытия в целом. На третьей стадии процесса напыляют керамическое покрытие под углом 45-90° к поверхности гребней (второй слой покрытия). Напыление керамического покрытия на третьей стадии преследует цель сформировать покрытие на всей свободной поверхности гребней, сформированных на второй стадии напыления. Напыление слоя керамического покрытия под углом 45-90° к поверхности гребней позволяет получить на поверхности гребней плотное и прочное керамическое покрытие без существенных уменьшений пористости второго слоя, полученного на второй стадии.

Пример 1

При напылении композиционного покрытия по предлагаемому способу сформировали покрытие в три стадии при подогреве подложки 200°C. На первой стадии напылили титановый слой из титановой проволоки толщиной 100 мкм. Напыление вели под углом 70-90° к подложке. На второй стадии напыление вели из титановой проволоки под углом 30°, толщина покрытия 600 мкм. На третьей стадии напыление вели под углами 45-90° к поверхности гребней из порошка гидроксиапатита с размером частиц 25-40 мкм, толщина покрытия гидроксиапатита 90 мкм. Среднее значение сдвиговой прочности композиционного покрытия 120 МПа, пористость покрытия 55%, средний размер пор 600 мкм.

Пример 2

При напылении композиционного покрытия по предлагаемому способу сформировали покрытие в три стадии при подогреве подложки 400°C. На первой стадии напылили танталовый слой из танталовой проволоки толщиной 50 мкм. Напыление вели под углом 90° к подложке. На второй стадии напыление вели из танталовой проволоки под углом 35°, толщина покрытия 600 мкм. На третьей стадии напыление вели под углами 50-80° к поверхности гребней из порошка гидроксиапатита с размером частиц 40-63 мкм, толщина покрытия гидроксиапатита 100 мкм. Среднее значение сдвиговой прочности композиционного покрытия 130 МПа, пористость покрытия 46%, средний размер пор 450 мкм.

Пример 3

При напылении композиционного покрытия по предлагаемому способу сформировали покрытие в три стадии при подогреве подложки 900°C. На первой стадии напылили титановый слой из порошка с размером частиц 30-71 мкм толщиной 50 мкм. Напыление вели под углом 90° к подложке. На второй стадии напыление вели из титанового порошка с размером частиц 30-71 мкм под углом 25°, толщина покрытия 500 мкм. На третьей стадии напыление вели под углом под углами 50-80° к поверхности гребней из порошка гидроксиапатита с размером частиц 25-32 мкм, толщина покрытия гидроксиапатита 30 мкм. Сдвиговая прочность покрытия 125 МПа, пористость покрытия 60%, средний размер пор 500 мкм.

Таким образом, поставленная задача решена. В предлагаемом способе напыления композиционного пористого покрытия получен объем пористости покрытия - 30-60%, размер пор - 300-600 мкм. Сдвиговая прочность покрытия выше, чем в прототипе.

Способ получения композиционного пористого биоактивного покрытия, включающий напыление на подложку на первой стадии слоя металлического покрытия под углом к подложке более 45°, напыление на него на второй стадии слоя из того же металлического материала под углом к подложке менее 45° и напыление на полученные слои на третьей стадии биоактивного керамического слоя, отличающийся тем, что напыление слоев на всех трех стадиях осуществляют при температуре подложки 200-900°С, а биоактивный керамический слой на третьей стадии напыляют под углом 45-90° к поверхности слоя металлического покрытия, сформированного на второй стадии напыления.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 90.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014
Показаны записи 1-10 из 58.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014

Похожие РИД в системе