×
26.08.2017
217.015.d9f3

ТРЕХКАНАЛЬНЫЙ НАПРАВЛЕННЫЙ ОТВЕТВИТЕЛЬ СВЧ СИГНАЛА НА МАГНИТОСТАТИЧЕСКИХ ВОЛНАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения магнитостатических волн, дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микроволноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов. Технический результат: создание трехканального микроволнового ответвителя мощности СВЧ сигнала с управлением частотным диапазоном ответвления и шириной полосы частот. 5 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности.

Известен направленный ответвитель, выполненный на диэлектрической подложке с нанесенной топологией направленного ответвителя, состоящей из четырех отрезков подводящих полосковых линий и области связанных однородных полосковых линий, при этом в область связанных однородных полосковых линий введены два одинаковых участка дополнительных связанных полосковых линий, расположенных по краям области связанных однородных полосковых линий симметрично относительно ее центра, при этом суммарная длина области связанных полосковых линий L=(0.2÷0.3)λсв, где λсв - длина волны области связанных полосковых линий на центральной частоте (RU 2571302 С1, АО ЦКБА, 20.12.2015). Недостатком данного устройства является невозможность расширения полосы частот работы ответвителя.

Известен направленный ответвитель, состоящий из двух связанных линий передачи, сформированных параллельно друг другу, располагающихся на диэлектрической подложке. Обратная сторона подложки полностью металлизирована. Замкнутый кольцевой проводник сформирован вокруг линии передачи и электромагнитно связан с ними, что обеспечивает более технологичные размеры тонкопленочной структуры на серийно выпускаемых керамических подложках при большей широкополосности ответвителя, достигающей 70% (RU 2101808 C1, Новосибирский ГТУ, 10.01.1998). Недостатком данного устройства является необходимость точного согласования элемента, что обуславливает сложность в интеграции ответвителя для планарной топологии интегральных микросхем.

Известен микрополосковый направленный ответвитель на нерегулярных связанных линиях (RU 107644 U1, ТУСУР, 20.08.2011). Он содержит основную диэлектрическую подложку, на которой расположены связанные микрополосковые линии, в зазор которых перпендикулярно основной подложке установлена дополнительная диэлектрическая подложка. На нижней части боковых поверхностей дополнительной подложки нанесены микрополосковые линии, причем электрический контакт с линиями на основной и дополнительной подложке расположен вдоль линии касания подложек. Микрополосковые линии выполнены в виде ступенчато-нерегулярных линий.

Недостатками данного устройства являются сложная трехмерная конструкция из двух перпендикулярных подложек, а также отсутствие возможности управления частотными характеристиками ответвителя (перестройка частотного диапазона) и невозможность использования широкой полосы частот.

Также известны устройства на основе мультиферроидных слоистых структур (US 8615150 (В2), CHOWDHURY AREF и др., 24.12.2013) и представляющие собой ферритовые слои на подложке, нагруженные со стороны феррита слоем сегнетоэлектрического материала, что позволяет управлять их характеристиками как при помощи изменения внешнего магнитного, так и электрического полей. Недостатками данного класса устройств являются низкая пропускная способность, вызванная одномодовым режимом работы, и невозможность управления спектральными характеристиками различных поперечных мод волн.

Наиболее близким к заявляемому устройству является ответвитель на МСВ (DE 4204299 (A1), Non-reciprocal waveguide coupler using magnetostatic surface waves -whose direction of propagation on epitaxial garnet film is at right angles to fundamental magnetic field, SIEMENS AG, 18.09.1993 - прототип). Он содержит подложку из галлий-гадолиниевого граната, выращенную на данной подложке пленку из железо-иттриевого граната и располагающиеся на данной пленке микрополосковые антенны, обеспечивающие возбуждение спиновых волн в пленке железо-иттриевого граната. Устройство может быть использовано в качестве n-портового направленного ответвителя на частотах по меньшей мере нескольких ГГц, а также фазовращателя.

Недостатком устройства является отсутствие средств регулирования характеристик распространения МСВ в широком диапазоне частот.

Патентуемый направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения магнитостатических волн.

Отличие состоит в том, что дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микроволноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов.

Ответвитель может характеризоваться тем, что пленка ЖИГ имеет длину в диапазоне от 4000 до 6000 мкм, толщину в диапазоне от 8 до 12 мкм и намагниченность М насыщения в диапазоне от 130 до 150 Гс, а также тем, что ширина микроволноводов составляет от 150 до 250 мкм, преимущественно 200 мкм.

Ответвитель может характеризоваться и тем, что ширина h микроволноводов и зазор s между ними удовлетворяет условию: s меньше или равно 0,25 h.

Ответвитель может характеризоваться также тем, что слой пьезоэлектрического материала представляет собой лантангаллиевый танталат, имеет толщину в диапазоне от 350 до 450 мкм, ширину - от 600 до 800 мкм, а длину от 2800 до 3200 мкм, а металлические пленочные электроды выполнены из хрома.

Ответвитель может характеризоваться, кроме того, тем, что пленка ЖИГ имеет длину 5000 мкм, ширину 200 мкм, толщину 10 мкм и намагниченность насыщения М=139 Гс, а слой пьезоэлектрического материала представляет собой лантангаллиевый танталат, имеет толщину 400 мкм, ширину - 680 мкм, а длину 3000 мкм.

Технический результат - создание трехканального микроволнового ответвителя мощности СВЧ сигнала с управлением частотным диапазоном ответвления и шириной полосы частот посредством воздействия статическим электрическим и магнитным полями при уменьшении размеров до микроразмерной области и упрощении конструкции.

Изобретение поясняется чертежами, где:

фиг. 1 представлена конструкция устройства;

фиг. 2 - конструкция устройства, вид сверху;

фиг. 3, 4, 5 - результат численного моделирования процесса перекачки мощности;

фиг. 6 - таблица режимов работы трехканального ответвителя.

Позициями на чертежах обозначены:

1 - входная микрополосковая антенна;

2, 3, 4 - микроволноводы из пленки ЖИГ;

5 - металлические электроды;

6 - подложка из пленки галлий гадолиниевого граната (ГГГ);

7 - пьезоэлектрический слой (ЛТ);

8 - выходная микрополосковая антенна 1;

9 - выходная микрополосковая антенна 2;

10 - выходная микрополосковая антенна 3.

Устройство содержит подложку, представляющую собой пленку 6 галлий гадолиниевого граната (ГГГ) с размерами (Ш×Д×Т) 680 мкм×5000 мкм×500 мкм. На поверхности пленки 6 ГГГ сформирована система латерально связанных микроволноводов 2, 3, 4 на основе пленок железо-иттриевого граната (ЖИГ) толщиной 10 мкм, расстояние между пленками 40 мкм и намагниченностью насыщения М=139 Гс. Назовем «первым каналом» микроволновод 2, «вторым каналом» - микроволновод 3, «третьим каналом» - микроволновод 4. На системе латерально связанных микроволноводов расположены микрополосковые антенны 1, 8, 9, 10 шириной 30 мкм, обеспечивающие возбуждение и прием магнитостатических волн. При этом входная антенна 1 расположена на одном конце второго микроволновода 3, первая выходная антенна 8 расположена на втором конце первого микроволновода 2, вторая выходная антенна 9 расположена на конце второго микроволновода 3 со стороны первой выходной антенны 8, третья выходная антенна 10 расположена на конце третьего микроволновода 4 со стороны первой выходной антенны 8. На поверхности латерально связанных микроволноводов 2, 3 и 4 между входной и выходными антеннами расположен пьезоэлектрический слой 6 лантангаллиевого танталата (ЛТ) (лангатата La3Ga5,5Ta0,5O14) с размерами (Ш×Д×Т) 680 мкм×3000 мкм×400 мкм. Металлические электроды 5 из хрома нанесены на обе поверхности пьезоэлектрического слоя 7, т.е. один электрод расположен на, а другой - под слоем 7 на поверхности микроволноводов 2, 3, 4. Ширина каждого из ЖИГ микроволноводов составляет 200 мкм, длина каждого - 5000 мкм. Внешнее магнитное поле Н0 направлено касательно вдоль оси x (см. фиг. 1).

Принцип работы данного ответвителя заключается в том, что входной микроволновый сигнал, частота которого должна лежать в диапазоне частот, определяемым величиной внешнего постоянного магнитного поля, подается на 1. Далее микроволновый сигнал преобразуется в поверхностную магнитостатическую волну (МСВ), распространяющуюся вдоль микроволновода 3 (второй канал). Электрическая перестройка частоты возможна благодаря магнитоэлектрическому (МЭ) взаимодействию в структуре, которое заключается в следующем. Электрическое поле вызывает деформацию слоя пьезоэлектрика вследствие обратного пьезоэффекта. Деформация передается микроволноводам, которые механически связаны с пьезоэлектрическим слоем. Из-за пьезомагнитного эффекта изменяется внутреннее магнитное поле в микроволноводах, приводящее к изменению дисперсионной характеристики волнового процесса в структуре, что и позволяет реализовать двойное управление свойствами волны и, соответственно, характеристиками устройства. При этом управление осуществляется путем воздействия на материальные характеристики микроволноводов и пьезоэлектрика, при изменении приложенных к ним соответственно внешнего магнитного и электрического полей. По мере распространения волны за счет провисающих в латеральном направлении электромагнитных полей происходит возбуждение микроволноводов 2 и 4 (каналы один и три). Ввиду конечной ширины микроволноводов (2, 3 и 4) при распространении поверхностной магнитостатической волны реализуется многомодовый режим распространения. Поскольку расстояние между микроволноводами 2, 3 и 4 меньше поперечной ширины микроволноводов, то реализуется режим многомодовой связи, при котором каждая из поперечных мод волны связывается с модой такой же четности.

На фиг. 2 показан результат численного моделирования процесса перекачки мощности в рассматриваемой структуре при возбуждении центрального микроволновода. Возбуждалась первая поперечная мода микроволновода 3 (второй канал). Если прикладывать напряжение только к центральному второму каналу, то в области центрального канала величина внутреннего магнитного поля уменьшится, следовательно, изменятся волновые числа собственных мод центральной пленки и она перестанет взаимодействовать с боковыми микроволноводами и сигнал пойдет только по центральному каналу. Это соответствует фиг. 4. Аналогично, если прикладывать напряжение к третьему каналу, то и сигнал на выходе попадет, как показано на фиг. 4, в первый канал. Если прикладывать напряжение к первому каналу, то сигнал на выходе попадет, как показано на фиг. 5, в третий канал.

На фиг. 6 показана таблица режимов работы трехканального предлагаемого ответвителя мощности. Названия столбцов соответствуют режиму работы, при приложении напряжения к соответствующему каналу. Например, столбец «001» - соответствует случаю приложения напряжения к первому каналу; столбец «011» - случаю приложения напряжения к первому и второму каналу и т.д. Название строки соответствует режимам работы ответвителя, при которых сигнал выходит из соответствующего канала. Так, строка с названием «100» соответствует режиму, при котором сигнал выходит из третьего канала; строка с названием «101» - режиму, при котором сигнал выходит из первого и третьего каналов, при этом мощность сигнала разделяется поровну между каналами. Знаком «X» показано, что при соответствующем режиме приложения напряжения к одному из каналов, отмеченных в заголовке столбцов таблицы, сигнал на выходе попадает в соответствующий канал (каналы), отмеченный в заголовке строк таблицы. Так, например, в случае приложения напряжения к первому каналу (столбец с заголовком «001») сигнал на выходе может попасть во второй канал (строка с заголовком «010»), в третий канал (строка с заголовком «100») или мощность сигнала может разделиться пополам между вторым и третьим каналами (строка с заголовком «110»). Конкретный режим работы ответвителя будет в данном случае определяться величиной приложенного магнитного поля. Так, например, если при величине магнитного поля Н0 мощность сигнала разделяется пополам между вторым и третьим каналами, то при уменьшении магнитного поля на величину 0.02 Н0 сигнал на выходе попадет в третий канал, а при увеличении магнитного поля на величину 0.02 Н0 сигнал на выходе попадет во второй канал.

За счет конечной ширины микроволноводов, частотно-избирательный ответвитель мощности на основе латерально связанной структуры работает в многомодовом режиме, что, в свою очередь, позволяет расширить функциональные возможности ответвителя в телекоммуникационных системах с большой плотностью информационного сигнала, в частности использовать его как трехканальный направленный ответвитель с двойным управлением как функциональный элемент магнонной сети.


ТРЕХКАНАЛЬНЫЙ НАПРАВЛЕННЫЙ ОТВЕТВИТЕЛЬ СВЧ СИГНАЛА НА МАГНИТОСТАТИЧЕСКИХ ВОЛНАХ
ТРЕХКАНАЛЬНЫЙ НАПРАВЛЕННЫЙ ОТВЕТВИТЕЛЬ СВЧ СИГНАЛА НА МАГНИТОСТАТИЧЕСКИХ ВОЛНАХ
ТРЕХКАНАЛЬНЫЙ НАПРАВЛЕННЫЙ ОТВЕТВИТЕЛЬ СВЧ СИГНАЛА НА МАГНИТОСТАТИЧЕСКИХ ВОЛНАХ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 99.
29.12.2017
№217.015.f0ae

Криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приёмных систем

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из...
Тип: Изобретение
Номер охранного документа: 0002638964
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fc24

Пневматический сенсор для непрерывного неинвазивного измерения артериального давления

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством...
Тип: Изобретение
Номер охранного документа: 0002638712
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.073d

Свч-способ измерения концентрации водных растворов

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002631340
Дата охранного документа: 21.09.2017
19.01.2018
№218.016.0c15

Чувствительный элемент для акустического жидкостного сенсора

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой...
Тип: Изобретение
Номер охранного документа: 0002632575
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.1297

Оротрон

Изобретение относится к радиоэлектронике, в частности к конструкции источника высокочастотных электромагнитных колебаний коротковолновой части миллиметрового и субмиллиметрового диапазона волн. Технический результат - увеличение КПД открытого резонатора оротрона и, как следствие, увеличение КПД...
Тип: Изобретение
Номер охранного документа: 0002634304
Дата охранного документа: 25.10.2017
10.05.2018
№218.016.41c8

Гибридный акустический сенсор системы электронный нос и электронный язык

Использование: для физико-химического анализа жидких и газообразных сред с использованием акустических волн. Сущность изобретения заключается в том, что акустический сенсор системы электронный нос и электронный язык содержит плоскопараллельную пластину из пьезоэлектрического кристалла с...
Тип: Изобретение
Номер охранного документа: 0002649217
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.45d6

Способ спектроскопического анализа газовых смесей и спектрометр для его осуществления

Изобретение относится к исследованию и анализу газов с помощью электромагнитного излучения. Спектрометр состоит из последовательно размещенных источника микроволнового излучения, ячейки с исследуемым газом, приемной системы, включающей в себя детектор и блок обработки сигнала, и блока...
Тип: Изобретение
Номер охранного документа: 0002650354
Дата охранного документа: 11.04.2018
29.05.2018
№218.016.56f5

Волноводное устройство для измерения параметров жидкостей

Изобретение относится к области СВЧ-техники и может быть использовано для измерения и контроля жидкостей, в частности водных растворов и суспензий веществ химической и биологической природы в различных технологических процессах, исследованиях структуры водных растворов, определения...
Тип: Изобретение
Номер охранного документа: 0002655028
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5bba

Акустический эхолокатор

Изобретение относится к акустическим эхолокационным системам подповерхностного зондирования и может быть использовано для обнаружения локальных неоднородностей в акустически прозрачной среде. Решаемая техническая задача состоит в повышении достоверности и точности определения места расположения...
Тип: Изобретение
Номер охранного документа: 0002655711
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5f7d

Способ зондирования плазменного слоя геомагнитного хвоста и ионосферы земли

Изобретение относится к геофизике, может использоваться для зондирования плазменного слоя геомагнитного хвоста и ионосферы Земли и предназначено для мониторинга окружающей среды, обеспечения радиосвязи и навигации, информационного обеспечения сельского хозяйства, здравоохранения, безопасности...
Тип: Изобретение
Номер охранного документа: 0002656617
Дата охранного документа: 06.06.2018
Показаны записи 51-60 из 76.
29.12.2017
№217.015.f0ae

Криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приёмных систем

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из...
Тип: Изобретение
Номер охранного документа: 0002638964
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fc24

Пневматический сенсор для непрерывного неинвазивного измерения артериального давления

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством...
Тип: Изобретение
Номер охранного документа: 0002638712
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.073d

Свч-способ измерения концентрации водных растворов

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002631340
Дата охранного документа: 21.09.2017
19.01.2018
№218.016.0c15

Чувствительный элемент для акустического жидкостного сенсора

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой...
Тип: Изобретение
Номер охранного документа: 0002632575
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.1297

Оротрон

Изобретение относится к радиоэлектронике, в частности к конструкции источника высокочастотных электромагнитных колебаний коротковолновой части миллиметрового и субмиллиметрового диапазона волн. Технический результат - увеличение КПД открытого резонатора оротрона и, как следствие, увеличение КПД...
Тип: Изобретение
Номер охранного документа: 0002634304
Дата охранного документа: 25.10.2017
09.06.2018
№218.016.5e0e

Боевая часть

Изобретение относится к области вооружения, а именно к разработке боевых частей для боеприпасов (снарядов, гранат, мин) и ракет. Боевая часть состоит из корпуса, взрывателя, заряда и поражающих элементов, расположенных между корпусом и зарядом. При этом поражающие элементы изготовлены из...
Тип: Изобретение
Номер охранного документа: 0002656258
Дата охранного документа: 04.06.2018
20.06.2018
№218.016.64cf

Свч фотонный кристалл

Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения,...
Тип: Изобретение
Номер охранного документа: 0002658113
Дата охранного документа: 19.06.2018
14.09.2018
№218.016.87d7

Частотный фильтр свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотного фильтра. Сущность изобретения заключается в том, что частотный фильтр СВЧ сигнала на магнитостатических волнах содержит магнитный элемент,...
Тип: Изобретение
Номер охранного документа: 0002666968
Дата охранного документа: 13.09.2018
14.09.2018
№218.016.87df

Нелинейный делитель мощности свч сигнала на спиновых волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного делителя мощности с нелинейным эффектом. Делитель мощности СВЧ сигнала содержит единый входной порт, первый и второй выходные порты....
Тип: Изобретение
Номер охранного документа: 0002666969
Дата охранного документа: 13.09.2018
29.03.2019
№219.016.f57d

Модулятор свч на поверхностных магнитостатических волнах

Изобретение направлено на обеспечение управления уровнем режекции СВЧ-сигнала в полосе частот без необходимости обеспечения протекания управляющего постоянного тока по металлической пленке. Технический результат - возможность управления уровнем режекции СВЧ-сигнала в полосе частот без...
Тип: Изобретение
Номер охранного документа: 0002454788
Дата охранного документа: 27.06.2012
+ добавить свой РИД