×
26.08.2017
217.015.d9e3

Результат интеллектуальной деятельности: Оптический прицел системы наведения управляемого снаряда (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптико-электронного приборостроения и касается оптического прицела системы наведения управляемого снаряда. Прицел содержит соосно установленные визир и прожектор. Прожектор включает в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, оптический сканер, панкратический объектив, непрозрачную шторку, растровый диск, два оптронных датчика и формирователь импульсов. Оптический сканер выполнен в виде вращающейся призмы. Непрозрачная шторка установлена на оправу вращающейся призмы и выполнена с прозрачной щелью. Первый оптронный датчик снимает сигнал с непрозрачной шторки, а второй снимает сигнал с растрового диска. Выходы оптронных датчиков подключены ко входам формирователя импульсов, выходы которого соединены с лазерами. Технический результат заключается в повышении точности наведения управляемого снаряда. 2 н.п. ф-лы, 4 ил.

Изобретение относится к оптическим системам наведения управляемых снарядов и может быть использовано в системах управляемого оружия с телеориентацией в луче лазера.

Известен оптический прицел системы наведения управляемого снаряда [RU 2100745 С1, 27.12.1997], содержащий два инжекционных лазера, излучающие области которых установлены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, на которой последовательно установлены оптический сканер в виде вращающейся призмы и панкратический объектив, при этом ось вращения призмы совмещена с оптической осью панкратического объектива.

В этом прицеле сканирование производится различными частями плоских лучей, что приводит к ошибкам кодирования на частоте вращения сканера.

Известен также оптический прицел системы наведения управляемого снаряда [RU 2150073 С1 от 07.06.1999], содержащий установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер, выполненный в виде вращающейся призмы, и панкратический объектив, а также непрозрачную шторку, установленную на оправу вращающейся призмы, два оптронных датчика, две схемы задержи и формирователь импульсов.

В данном оптическом прицеле синхронизация формирования поля управления привязана к срабатыванию оптронных датчиков, а формирование кодовых посылок (координат) внутри поля осуществляется пропорционально текущему времени с момента срабатывания этих датчиков.

Т.е. формирование команд управления производится в соответствии с выражением

К=Т0±ΔT/(Т/8)⋅(t-T/8),

где К - интервал между посылками;

Т0 - опорное значение интервалов между посылками;

ΔT - максимальное отклонение интервалов между посылками;

t - текущее время с момента переключения одного из оптронных датчиков;

Т - период вращения призмы.

Т.е. в общем виде формирование кодовых посылок (команд управления на лазеры) для конкретной точки плоскости сканирования производится исходя из выражения:

К=f(t), где t - время от момента переключения датчиков положения шторки.

Т.е. определение положения сканирующей полоски внутри поля сканирования производится пропорционально времени от момента переключения оптронных датчиков.

Таким образом, для обеспечения приемлемой точности формирования команд управления по полю наведения необходимо обеспечить как мгновенную, так и среднюю равномерность вращения призмы во всем диапазоне климатических условий. И даже небольшое отклонение частоты вращения от номинального значения приводит к существенному снижению точности наведения.

Задачей данного изобретения является повышение точности наведения управляемого снаряда.

Поставленная задача достигается тем, что оптический прицел системы наведения управляемого снаряда, содержащий установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер, выполненный в виде вращающейся призмы, и панкратический объектив, а также непрозрачную шторку, установленную на оправу вращающейся призмы, два оптронных датчика, первый из которых снимает сигнал с непрозрачной шторки, и формирователь импульсов, первый и второй выходы которого соединены соответственно со входами первого и второго лазеров, снабжен растровым диском, ось вращения которого совпадает с осью вращения призмы и сигнал с которого снимается с помощью второго оптронного датчика, выход которого подключен ко второму входу формирователя импульсов, при этом непрозрачная шторка выполнена с оптически прозрачной щелью, а первый вход формирователя импульсов подключен к выходу первого оптронного датчика.

Во втором варианте решение поставленной задачи достигается тем, что в оптический прицел системы наведения управляемого снаряда, содержащий установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер, выполненный в виде вращающейся призмы, панкратический объектив и формирователь импульсов, первый и второй выходы которого подключены к входам первого и второго лазеров соответственно, введен датчик угла поворота, ось вращения которого совпадает с осью вращения оптической призмы, выходы соединены с входами формирователя импульсов.

Поставленная задача решается за счет того, что сначала измеряется положение сканирующей пластины (а не вычисляется как в прототипе) относительно опорной точки сканирования и, в соответствии с этим положением, происходит формирование кодовых посылок (команд управления) пропорционально координатам поля управления.

На фиг. 1 представлена структурная схема прожектора, выполненного по первому варианту, где 1, 2 - первый и второй инжекционные лазеры (ИЛ1, ИЛ2); 3 - поляризационный кубик (ПК); 10 - формирователь импульсов (ФИ); 11 - панкратический объектив (ПО).

На фиг. 2 представлена структурная схема прожектора, выполненного по второму варианту, 12 - датчик угла поворота (ДУП).

На фиг. 3 представлены эпюры работы устройства.

На фиг. 4 представлена схема, поясняющая работу устройства.

Примером реализации данного устройства служит прожектор (фиг. 1), содержащий два инжекционных лазера, например типа ИЛПИ-132, систему вывода излучения лазеров на единую оптическую ось, выполненную, например в виде поляризационного кубика 3, оптический сканер 4, состоящий из вращающейся призмы 5, на оправе 6 которой установлена непрозрачная шторка с оптической щелью, растровый диск 7, связанный с осью вращения сканера (или совмещенный с оправой), состоящий, например, из 512 оптически прозрачных и стольких же непрозрачных полос, двух неподвижных оптронных датчиков 8 и 9, выполненных, например, на основе щелевых оптических датчиков типа НОА2001 или аналогичных, и формирователь импульсов 10, выполненный, например, на микросхеме 1986ВЕ92.

Представленный прожектор работает следующим образом.

На фиг. 3 и фиг. 4 приведены диаграммы, поясняющие работу системы.

Вращающаяся призма 5 производит нутационное сканирование плоскими лучами лазеров 1 и 2 по формируемому полю, как показано на фиг. 4 (траектория движения). Радиус траектории сканирования на дальности управляемого снаряда поддерживается постоянным за счет изменения фокусного расстояния панкратического объектива 11. При этом в ходе сканирования призмы 5 шторка оправы и растровый диск производят прерывание сигналов в оптронных датчиках 8 и 9, на выходе которых формируются сигналы, представленные на фиг. 3а и фиг. 3б соответственно. При этом наличию сигнала на выходе первого оптронного датчика 8 (шель шторки оправы вращающейся призмы) соответствует исходная точка формирования поля управления, например, как показано на фиг. 4 (точка А). Т.е. в этой точке должен включиться первый лазер, обеспечивающий сканирование своей полосой излучения поле сканирования справа налево. Траектория движения этой полоски приведена на фиг. 4 (положение щели выставляется в процессе изготовления прожектора).

По мере движения излучающей полоски первого лазера (по мере вращения сканера) на выходе второго оптронного датчика формируются импульсы как показано на фиг. 3б. При этом число импульсов на выходе этого оптронного датчика определяется конструктивными особенностями растрового диска, и в нашем случае, например, равно 512 на один оборот призмы (сканера). Число этих импульсов задает точность формирования команд по полю управления. Так в нашем случае точек переключения кодовых комбинаций модуляции луча будет 128 за один проход и т.о., например, при величине поля управления, равной 3 м, теоретическая точность выделения управляемой ракетой координаты своего положения в луче равна (3/128)=0,023 м.

По сигналу с первого оптронного датчика (фиг. 3а) происходит приведение формирователя импульсов в исходное состояние и выключение лазеров.

По приходу первого импульса с выхода второго оптронного датчика (фиг. 3б) формирователь импульсов 10 формирует на входе первого лазера парные импульсы (фиг. 3с, d) с периодом следования в соответствии с формулами, приведенными на фиг. 3е, а в данный момент времени

где Tmin - минимальный временной интервал между парами посылок, соответствующий отрицательной единичной команде, t - шаг изменения интервала между парами импульсов, определяется выражением

t=(Tmax-Tmin)/128),

где Тmax - максимальный временной интервал между парами импульсов, соответствующий положительной единичной команде.

N - номер импульса, пришедший с выхода второго оптронного датчика, начиная с момента появления сигнала с выхода первого оптронного датчика.

Т.е. на выходе формируются импульсы, интервалы между которыми соответствуют отрицательной единичной команде

К=Tmin.

При дальнейшем вращении призмы, она поворачивается на угол, при котором опять срабатывает второй оптрон и на его выходе появляется второй импульс (фиг. 3б), и формирователь импульсов формирует следующую пару импульсов в соответствии с выражением (1), но для N=1 и т.д.

Т.о. формирователь импульсов формирует парные посылки импульсов для измеренного (фактического) положения луча лазера в пространстве независимо от равномерности скорости вращения сканера.

При приходе со второго оптронного датчика 127-го импульса формирователь импульсов прекращает формировать импульсы на первый лазер, а начинает формировать на второй (фиг. 3с) в соответствии с выражением, приведенным на фиг. 3f (точка Б на траектории движения фиг. 4)

При приходе со второго оптронного датчика 255-го импульса формирователь импульсов прекращает формировать импульсы на второй лазер и начинает формировать импульсы на первый в соответствии с выражением, приведенным на фиг. 3f в данный момент времени и в соответствии с номером пришедшего импульса с выхода второго оптронного датчика (в соответствии с положением сканирующей пластины в пространстве поля сканирования).

При приходе со второго оптронного датчика 383-го импульса формирователь импульсов прекращает формировать импульсы на первый лазер, а начинает формировать на второй в соответствии с выражением, приведенным на фиг. 3f.

Т.о. за счет того, что формирование парных посылок импульсов накачки лазеров происходит для измеренного (фактического) положения луча лазера в пространстве и не зависит от скорости и равномерности вращения пластинки сканера, удалось существенно повысить точность выделения координат управляемым снарядом, исключить биения и шумы выделения координат, связанные с мгновенной и средней неравномерностями вращения сканирующей пластины во всех условиях эксплуатации прицела.

В тоже время в качестве шторки, растра, первого и второго оптронных датчиков можно использовать любой датчик угла поворота, например энкодер типа Encoder HEDS 5540. И в этом случае структурная схема прицела имеет вид, представленный на фиг. 2.

Оптический прицел, выполненный по второму варианту работает, следующим образом.

Вращающаяся призма 5 производит нутационное сканирование плоскими лучами лазеров 1 и 2 по формируемому полю, как показано на фиг. 4. При этом на выходе датчика углового положения 12 присутствует сигнал, величина которого однозначно определяет угловое положение призмы, который поступает на формирователь импульсов 10, который производит включение и выключение первого 1 и второго 2 лазеров. При этом, как видно на фиг. 4, включение и выключение лазеров 1 и 2 происходит в точках: А(φ=45°) - включается первый лазер и выключается второй, Б(φ=135°) - выключается второй лазер и включается первый, С(φ=225°) - включается второй и выключается первый и Д(φ=315°) - включается первый и выключается второй лазеры, где φ - угловое положение призмы.

При этом формирователь импульсов 10 формирует на входы лазеров парные импульсы с периодом следования в соответствии с выражением

К=Tmin+f(φ).

Эти парные импульсы однозначно определены для конкретной точки плоскости сканирования (углового положения призмы). Таким образом, точность формирования импульсов (точность наведения) зависит только от характеристик датчика углового положения.


Оптический прицел системы наведения управляемого снаряда (варианты)
Оптический прицел системы наведения управляемого снаряда (варианты)
Оптический прицел системы наведения управляемого снаряда (варианты)
Оптический прицел системы наведения управляемого снаряда (варианты)
Оптический прицел системы наведения управляемого снаряда (варианты)
Источник поступления информации: Роспатент

Показаны записи 91-100 из 146.
12.07.2018
№218.016.709f

Ракета

Изобретение относится к области ракетной техники и может быть применено в ракетах с отделяемой стартовой ступенью. Ракета содержит маршевую ступень и отделяемую стартовую ступень с двигателем и механизмом разделения. Отделение стартовой ступени после окончания работы двигателя от маршевой...
Тип: Изобретение
Номер охранного документа: 0002660968
Дата охранного документа: 11.07.2018
25.08.2018
№218.016.7f61

Возбудитель волны те

Изобретение относится к области радиотехники, в частности к возбудителям волны TE. Возбудитель волны ТЕ состоит из выходного круглого волновода со стенкой, образующей контактный фланец, который соединяется через плиту модового фильтра с фланцем блока преобразователя волны ТЕ в TE, в котором...
Тип: Изобретение
Номер охранного документа: 0002664975
Дата охранного документа: 24.08.2018
19.10.2018
№218.016.9395

Управляемый снаряд, блок рулевого привода управляемого снаряда, пневмораспределительное устройство рулевого привода управляемого снаряда, механизм инициирования рулевого привода управляемого снаряда

Группа изобретений относится к области высокоточного оружия - управляемых снарядов. Технический результат - увеличение дальности полета управляемых снарядов. Управляемый снаряд содержит корпус. В корпусе закреплен блок рулевого привода и шпангоут с радиальными отверстиями. В этих отверстиях...
Тип: Изобретение
Номер охранного документа: 0002669979
Дата охранного документа: 17.10.2018
21.10.2018
№218.016.9481

Способ юстировки информационных средств зенитной боевой машины и устройство для юстировки информационных средств зенитной боевой машины

Изобретение относится к области вооружения. Способ, реализуемый устройством юстировки информационных средств зенитной боевой машины (БМ), заключается в измерении координат вспомогательных объектов, измерении дальности от вспомогательных объектов до информационных средств БМ, измерении...
Тип: Изобретение
Номер охранного документа: 0002670242
Дата охранного документа: 19.10.2018
23.10.2018
№218.016.950a

Способ подготовки к стрельбе и артиллерийские боеприпасы, его реализующие

Изобретение относится к артиллерийским боеприпасам, в которых снаряд и зарядное устройство метательного заряда стыкуется перед заряжанием их в ствол орудия, а их разделение происходит в результате разрушения элемента форсирования в процессе выстрела. Способ заключается в том, что перед...
Тип: Изобретение
Номер охранного документа: 0002670299
Дата охранного документа: 22.10.2018
26.10.2018
№218.016.962a

Боевой модуль и способ использования боевого модуля

Группа изобретений относится к военной технике. Боевой модуль включает фланец с элементами крепления, передним торцом, проемом, пусковое устройство (ПУ) с управляемыми ракетами, поворотную платформу с электроприводом. Фланец снабжен электроприводом с зубчатым колесом и продольными...
Тип: Изобретение
Номер охранного документа: 0002670594
Дата охранного документа: 23.10.2018
21.11.2018
№218.016.9f4a

Фазированная антенная решетка

Изобретение относится к радиотехнике и может применяться в антенной технике, в частности в конструкции фазированных антенных решеток (ФАР), используемых в радиолокационных станциях с электрическим сканированием. ФАР содержит корпус с закрепленными в нем модулями, объединяющими элементы ФАР,...
Тип: Изобретение
Номер охранного документа: 0002672810
Дата охранного документа: 19.11.2018
24.11.2018
№218.016.a0c2

Механизм запирания канала ствола артиллерийского орудия

Изобретение относится к военной технике – артиллерийским орудиям с клиновым запиранием канала ствола. Механизм запирания канала ствола артиллерийского орудия содержит вертикально скользящий клин с наклонными поверхностями и ромбовидным выступом, привод перемещения клина с подпружиненными...
Тип: Изобретение
Номер охранного документа: 0002673172
Дата охранного документа: 22.11.2018
31.01.2019
№219.016.b5a0

Гирокоординатор головки самонаведения

Предложенное изобретение относится к области управляемого вооружения, а именно к гирокоординаторам головок самонаведения, используемым в системах управления управляемых ракет. Задачей предлагаемого изобретения является уменьшение габаритов гирокоординатора при обеспечении малого времени...
Тип: Изобретение
Номер охранного документа: 0002678514
Дата охранного документа: 29.01.2019
23.02.2019
№219.016.c6cc

Инерционный замыкатель

Изобретение относится к области вооружения, в частности к управляемым ракетам, снабженным боевыми частями. Инерционный замыкатель содержит корпус, подпружиненное инерционное тело, выполненное в виде тела вращения, и электрические контактные поверхности. В верхней части корпуса замыкателя...
Тип: Изобретение
Номер охранного документа: 0002680572
Дата охранного документа: 22.02.2019
Показаны записи 91-95 из 95.
02.07.2019
№219.017.a373

Объектив с переменным фокусным расстоянием

Объектив содержит пять компонентов, первый из которых неподвижный, выполненный из двух положительных менисков, обращенных выпуклостью к предмету, второй из которых склеен из положительной и отрицательной линз, второй и третий компоненты, установленные с возможностью перемещения вдоль оптической...
Тип: Изобретение
Номер охранного документа: 0002298213
Дата охранного документа: 27.04.2007
05.07.2019
№219.017.a686

Способ проверки годности прицела к эксплуатации и система проверки годности прицела к эксплуатации

Группа изобретений относится к системам автоматического управления, в частности к средствам проверки прицелов, предназначенных для телеориентирования в оптическом луче машин. Способ проверки годности прицела включает установку в фокальной плоскости объектива диафрагмы с фотоприемником и...
Тип: Изобретение
Номер охранного документа: 0002397427
Дата охранного документа: 20.08.2010
25.04.2020
№220.018.199f

Способ управления пулей и управляемая пуля

Изобретение относится к области ракетной техники и может быть использовано в малогабаритных ракетных комплексах и, в том числе, пулях. Технический результат - увеличение точности стрельбы. По способу осуществляют разгон управляемой пули стартовым двигателем. Затем отделяют стартовый двигатель и...
Тип: Изобретение
Номер охранного документа: 0002719802
Дата охранного документа: 23.04.2020
05.06.2020
№220.018.2438

Способ поражения военной техники управляемыми боеприпасами

Изобретение относится к области вооружений и может быть использовано в противотанковых, зенитных ракетных комплексах, комплексах управляемого вооружения танков, а также в ракетных комплексах межвидового применения. Для поражения военной техники управляемыми боеприпасами осуществляют наведение...
Тип: Изобретение
Номер охранного документа: 0002722709
Дата охранного документа: 03.06.2020
15.05.2023
№223.018.57cd

Прицел-прибор наведения

Изобретение относится к оптико-механическим приборам, в частности к прицелам-приборам наведения (ППН). Прицел-прибор наведения состоит из корпуса, в котором установлены электрически связанные между собой блоки с оптическими каналами, закрепленные на общей стойке, размещенной внутри корпуса....
Тип: Изобретение
Номер охранного документа: 0002767845
Дата охранного документа: 22.03.2022
+ добавить свой РИД