×
26.08.2017
217.015.d8d4

Результат интеллектуальной деятельности: ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002623493
Дата охранного документа
27.06.2017
Аннотация: Настоящее изобретение касается области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду. Изобретение впервые показывает неожиданный замедляющий эрозию эффект предварительно введенных в смолу связующих веществ, таких как органические соединения кремния, при добавлении наполнителя в виде наночастиц. 2 н. и 6 з.п. ф-лы, 4 ил.

Настоящее изобретение касается в общем области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду.

Во вращающихся электрических машинах, таких как двигатели или генераторы, надежность изоляционной системы в решающей степени ответственна за их эксплуатационную безопасность. Изоляционная система имеет задачу, долговременно электрически изолировать электрические провода (проволоки, катушки, стержни) друг от друга и от пакета стали статора или окружающей среды. Внутри высоковольтной изоляции различают изоляцию между отдельными проводами (изоляция отдельных проводов), между проводами или, соответственно, витками (изоляция проводов или, соответственно, витков) и между проводами и потенциалом массы в области паза и лобовой части обмотки (основная изоляция). Толщина основной изоляции выбрана как в соответствии с номинальным напряжением машины, так и с эксплуатационными и производственными условиями. Конкурентоспособность будущих установок по производству энергии, их распределение и использование в решающей мере зависит от применяемых материалов и используемых технологий изоляции.

Основная проблема у такого рода находящихся под электрической нагрузкой изоляторов заключается в так называемой индуцированной частичным разрядом эрозии с образующимися так называемыми каналами в виде «елки», которые в итоге приводят в электрическому пробою изолятора.

У высоковольтных и средневольтных машин сегодня применяются так называемые импрегнированные слоистые слюдяные изоляции. При этом изготовленные из изолированных отдельных проводов фасонные катушки и провода обматываются слюдяными лентами и предпочтительно в процессе вакуумно-нагнетательной импрегнации (процесс VPI) импрегнируются синтетической смолой. Соединение импрегнирующей смолы с несущей лентой слюды дает сегодняшнюю механическую прочность, а также необходимую устойчивость электрической изоляции к частичному разряду.

Слюдяная бумага соответственно потребностям электротехнической промышленности преобразуется в более стабильную слюдяную ленту. Это происходит путем склеивания слюдяной бумаги с материалом носителя, который обладает большой механической прочностью, с помощью клея. Клей отличается предпочтительно тем, что при температуре помещения он обладает высокой прочностью, чтобы обеспечивать соединение слюды и носителя и при повышенных температурах (60-150°C) переходит в жидкое состояние. Это позволяет наносить его в качестве клея при повышенной температуре в жидкой форме или в смеси с легколетучим растворителем. После охлаждения или удаления растворителя клей находится в твердой, но все же гибкой форме и позволяет, например, наносить слюдяную ленту вокруг стержней Ребеля, состоящих из отдельных проводов и фасонных катушек, при температуре помещения, при этом клеящие свойства клея препятствуют тому, чтобы происходило отслоение слюдяной бумаги от материала носителя. Образовавшаяся таким образом слюдяная лента наматывается в несколько слоев вокруг электрических проводов.

У высоко- и средневольтных двигателей и генераторов применяются слоистые слюдяные изоляции. При этом изготовленные из изолированных отдельных проводов фасонные катушки обматываются слюдяными лентами и в процессе вакуумно-нагнетательной импрегнации (VPI = vacuum pressure impregnation) импрегнируются синтетической смолой. При этом применяется слюда в виде слюдяной бумаги, при этом в рамках импрегнации находящиеся в слюдяной бумаге между отдельными частицами полости заполняются смолой. Соединение импрегнирующей смолы и материала носителя слюды дает механическую прочность изоляции. Электрическая прочность получается за счет множества граничных поверхностей твердое вещество-твердое вещество применяемой слюды. Образовавшееся таким образом наслоение из органических и неорганических материалов образует микроскопические граничные поверхности, устойчивость которых к отдельным разрядам и тепловым нагрузкам определяется свойствами слюдяных пластинок. Посредством трудоемкого процесса VPI даже мельчайшие полости в изоляции должны заполняться смолой, чтобы сократить до минимума количество внутренних граничных поверхностей газ-твердое вещество.

Для дополнительного улучшения устойчивости описывается применение заполнителей в виде наночастиц.

Соединение импрегнирующей смолы и ленты-носителя слюды дает сегодняшнюю механическую прочность, а также необходимую устойчивость электрической изоляции к частичному разряду.

Наряду с процессом VPI, существует также технология Resin Rich (обогащения смолой) для изготовления и импрегнации слюдяной ленты, то есть изоляционной ленты, и поэтому, следовательно, изоляционной системы.

Основным отличием двух технологий является конструкция и изготовление собственной изоляционной системы катушек. В то время как система VPI является готовой только после пропитки и после затвердевания обмотки в печи с циркуляцией воздуха, отдельно затвердевший под действием температуры и давления каркас катушки Resin Rich уже до монтажа в статор представляет собой функционирующую и контролируемую изоляционную систему.

Процесс VPI работает с пористыми лентами, которые в вакууме и при последующей подаче в пропиточный резервуар избыточного давления после затвердевания в печи с циркуляцией воздуха преобразуются в прочную и непрерывную изоляционную систему.

В противоположность этому изготовление катушек Resin Rich является более трудоемким, так как каждый каркас катушки или стержень обмотки должен изготавливаться отдельно в специальных прессах для спекания, что приводит к повышению удельной стоимости отдельной катушки. При этом применяются слюдяные ленты, которые импрегнированы полимерным изоляционным материалом, находящимся в так называемом состоянии B. Это означает, что полимер, чаще всего ароматические эпоксидные смолы (BADGE (диглицидиловый эфир бисфенола A), BFDGE (диглицидиловый эфир бисфенола F), эпоксидированный фенол-новолак, эпоксидированный крезол-новолак и ангидриды или амины в качестве отвердителей), является частично сшитым и при этом имеет неклейкое состояние, но при повторном нагреве может снова расплавляться и затем отверждаться и таким образом приводиться в окончательную форму. Так как смола вводится в избытке, при последующем прессовании она может течь во все полости и впадины для достижения соответствующего качества изоляции. Избыточная смола в процессе прессования выпрессовывается из заготовки.

Из литературы известно, что применение наполнителей в виде наночастиц в полимерных изоляционных материалах приводит к значительным улучшениям изоляции в отношении электрической долговечности.

Недостатком известных систем, в частности систем на основе эпоксидных смол, является быстрое разрушение полимерной матрицы под действием частичного разряда, которое здесь называется эрозией. Вследствие применения полимерной матрицы с устойчивыми к эрозии наночастицами (окись алюминия, двуокись кремния) происходит ее раскрытие, вызванное начавшимся разложением полимера, так называемой деградацией полимера.

В основе настоящего изобретения лежит задача сделать возможной изоляционную систему с улучшенной устойчивостью к частичному разряду.

По одному аспекту изобретения предоставляется способ изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду, включающий в себя следующие шаги способа:

- приготовление изоляционной ленты, которая включает в себя слюдяную бумагу и материал носителя, склеенные посредством клея друг с другом;

- обматывание электрического провода изоляционной лентой и

- импрегнация намотанной вокруг провода изоляционной ленты синтетической смолой, отличающийся тем, что в систему синтетической смолы перед добавлением наполнителя в виде наночастиц добавляется связующее вещество.

По другому аспекту изобретения предоставляется изоляционная система с улучшенной устойчивостью к частичному разряду, которая имеет намотанную вокруг электрического провода изоляционную ленту, включающую в себя соединенную с материалом носителя слюдяную ленту, при этом изоляционная лента импрегнирована смолой, отличающаяся тем, что импрегнированная изоляционная лента пропитана наполнителем в виде наночастиц, который по меньшей мере частично агломерирован посредством связующего вещества.

Известно, что неорганические частицы, в противоположность полимерному изоляционному материалу, не подвергаются повреждениям и разрушениям под действием частичного разряда, или подвергаются только в очень ограниченном объеме. При этом результирующее замедляющее эрозию действие неорганических частиц зависит, в частности, от диаметра частиц и образующейся при этом поверхности частиц. При этом оказывается, что чем больше удельная поверхность частиц, тем больше действие на частицы, замедляющее эрозию. Неорганические наночастицы имеют очень большие удельные поверхности, составляющие 50 г/м2 или более.

В принципе, у изоляционного материала без наполнителя или на основе слюды на основе эпоксидных смол под действием частичного разряда происходит быстрое разрушение полимерной матрицы. При реализации полимерной матрицы с устойчивым к эрозии наполнителем в виде наночастиц (окись алюминия, двуокись кремния) происходит раскрытие наполнителя, вызванное деградацией полимера.

С возрастающей продолжительностью эрозии постепенно происходит образование прочно прилипающего, плоского слоя на поверхности опытного образца, состоящего из раскрывшегося наполнителя в виде наночастиц. Вследствие этого вызванного эродированным полимером сшивания частиц наполнителя в виде наночастиц происходит пассивирование поверхности, и полимер под пассивирующим слоем эффективно защищается от дальнейшей эрозии под действием частичного разряда.

Неожиданно было установлено, что при применении связующих веществ, в частности силанов, в импрегнирующей смоле и/или в смоле Resin Rich могло достигаться замедление эрозии.

Связующие вещества чаще всего представляют собой кремний-органические соединения, которые посредством реакций конденсации химически присоединяются к поверхности наполнителей или наночастиц. Благодаря связующим веществам улучшается присоединение частиц к полимерной матрице, благодаря чему улучшается устойчивость к эрозии. Это зависит непосредственно от поверхности наполнителя, из-за чего применение связующих веществ на частицах с малыми диаметрами улучшает устойчивость к эрозии в особенной мере. Такого рода покрытие соответствует первому слою в модели Multi Core проф. Танака в Tanaka et al., Dependence of PD Erosion Depth on the Size of Silica Fillers; Takahiro Imai*, Fumio Sawa, Tamon Ozaki, Toshio Shimizu, Ryouichi Kido, Masahiro Kozako and Toshikatsu Tanaka; Evaluation of Insulation Properties of Epoxy Resin with Nano-scale Silica Particles Toshiba Research Cooperation.

Удалось показать, что применение органосиланов синергетическим образом может использоваться с наночастицами, при этом связующие вещества, такие как силаны, подмешиваются в импрегнирующую смолу или смолу Resin Rich.

Один из особенно предпочтительных вариантов осуществления изобретения заключается в синергетическом использовании описанной модели пассивирующего слоя под действием частичного разряда и улучшении замедления эрозии при применении органосиланов в высоковольтных изоляционных системах на основе слюды. Это достигается, когда добавленные органосиланы положительно влияют на образование и образ действия образующегося под действием частичного разряда пассивирующего слоя. Повышенная устойчивость к эрозии может объясняться спонтанным спеканием частиц, которое катализируется применением органосиланов, и образованием как бы керамического слоя. При этом применение органических силанов не ограничивается применением для покрытия наночастиц, а может, как здесь впервые описано, также осуществляться путем непосредственного добавления в качестве компонента к формуле реактивной смолы.

Ниже поясняются возможные основные принципы для предпочтительно улучшенной устойчивости к эрозии за счет применения органических силанов в формуле смолы.

Органические силаны активируются под действием частичного разряда и приводят, например, посредством реакции конденсации к сшиванию наночастиц посредством образующихся соединений силоксана.

POSS (polyhedral oligomeric silsesquioxanes), (ПОСС, полиэдральные олигомерные силсескиоксаны), представляют собой минимальную возможную единицу органических силанов в виде наночастиц и обеспечивают возможность сшивания наночастиц под влиянием энергий частичного разряда.

Органические силаны (одно- или многофункциональные) своими реактивными группами обеспечивают возможность сшивания наночастиц путем химических реакций с реактивными группами на поверхности наночастиц.

В соответствии с изобретением получаются особенно предпочтительные варианты осуществления с формулами реактивных смол, которые состоят из следующих компонентов.

Основу смолы образует, например, эпоксидная смола и/или полиуретановая смола.

Отвердитель включает в себя в качестве функциональной группы, например, ангидрид, ароматический амин и/или алифатический амин.

Наполнитель в виде наночастиц имеет, например, размер частиц от 2,5 до 70 нм, в частности от 5 до 50 нм в концентрации от 5 до 70 вес.%, в частности от 10 до 50 вес.%, на основе SiO2 Al2O3. Возможно содержание других наполнителей, добавок, пигментов.

Связующим веществом служит предпочтительно органическое соединение кремния, такое как органосилан и/или POSS. Они имеются, также предпочтительно, в синтетической смоле в концентрации от 0,1 до 45 вес.%, в частности от 1 до 25 вес.%.

Применение связующих веществ, таких как органические соединения кремния, как части формулы смолы в комбинации с вышеназванными компонентами, дает следующее преимущество, что возможно применение связующего вещества, то есть силана, как части реактивной смолы в более высоких концентрациях, чем при применении силанов в качестве связующих веществ частиц перед добавлением в реактивную смолу. Благодаря применению органосилана как части формулы смолы возможно, кроме того, применение существенно большего количества силанов, так как многообразие применяемых органических силанов увеличено, когда они не должны прикрепляться к поверхностям частиц в виде покрытий.

Вследствие поясненных преимуществ спектр применяемых органосиланов очень широк. Обычно применяются силаны, которые содержат одну или несколько функциональных групп с достаточной реактивностью и могут вступать в реакцию с поверхностью частиц. Применяемые силаны могут иметь от 1 до 4 функциональных групп.

На фиг.1 схематично показан принципиальный механизм сшивания частиц в реакционной смеси на примере бифункционального органосилана. В принципе, силаны могут иметь от одной до четырех реактивных функциональных групп, чтобы оказывать положительное влияние на устойчивость к эрозии. Эти функциональные группы обладают тем свойством, что они могут реагировать с поверхностью частиц, благодаря чему получается большое многообразие органосиланов.

Предложенный на фиг.1 механизм сшивания частиц бифункциональным силаном; R1 = гидрокси, алкокси, галоген, глицидокси; R2 = алкил, глицидокси, винил, ангидрид пропил-янтарной кислоты, метакрилоксипропил проявляет замещение остатков R1 у силана наночастицами. R2 может быть также амидным, сульфидным, оксидным или H. При этом «амидный, оксидный и сульфидный» означает, что имеются другие органические остатки R’2, присоединенные к кремнию азотом, кислородом или серой.

Частицы 1 и 2 замещением остатков R2 на ядре 3 кремния, например, при повышении 4 температуры, обе соединяются с ним и поэтому находятся в непосредственной близости друг от друга, сшиты ядром 3 кремния.

Потенциал нанотехнологии снова проявляется здесь при применении наполнителей в виде наночастиц в комбинации с предлагаемыми изобретением силанами, например, в применяемых в настоящее время изоляционных материалах на основе слюды.

На фиг.2-4 в каждом случае эталонные пробы, которые представляют собой опытные пробные образцы (изображены прерывистыми линиями), противопоставляются вариантам осуществления изобретения. Опытные образцы соответствуют в уменьшенной форме уровню техники в отношении изолированных медных проводов в статорах гидро- и турбогенераторов. Они измеряются под нагрузкой электрического поля до электрического пробоя. Так как электрическая прочность изоляционной системы при эксплуатационной нагрузке составляет несколько десятилетий, длительные электрические испытания происходят при многократно превышенных напряженностях электрического поля.

Показанный на фиг.2 график представляет собой средние значения электрической долговечности соответственно семи пробных образцов при трех разных нагрузках поля для соответственно стандартной изоляционной системы (слюда) и изоляционной системы, наполненной наночастицами/силаном. Ненаполненные системы (наименование Micalastic (Микаластик)) имеют при этом долю, равную приблизительно 50 вес.% слюды и 50 вес.% смолы. Указанная доля наночастиц уменьшает соответственно долю смолы. Доля слюды всегда остается постоянной.

Показанные на фиг.2 кривые долговечности ненаполненных и наполненных наночастицами высоковольтных изоляционных систем (Micalastic (черный) и Micalastic с наночастицами 10 вес.% (диаметр приблизительно 20 нм) и органическим силаном (3-глицидоксипропилтриметоксисилан, 5 вес.%) отчетливо показывают, что названные последними системы обладают значительно большей долговечностью при одинаковой нагрузке.

На фиг.3 показаны соответствующие кривые долговечности ненаполненных и наполненных наночастицами высоковольтных изоляционных систем (Micalastic (черный) и Micalastic с наночастицами 10 вес.% (диаметр приблизительно 20 нм), октаметилтрисилоксан 2,5 вес.%. Здесь также снова можно хорошо видеть почти параллельное смещение долговечности в направлении увеличения времени.

Наконец, также на фиг.4 показаны кривые долговечности ненаполненных и наполненных наночастицами высоковольтных изоляционных систем (Micalastic (черный) и Micalastic с наночастицами 10 вес.% (диаметр приблизительно 20 нм), POSS (2,5 вес.%).

Когда сравнивают долговечность соответствующих групп, оказывается, что достигаются улучшения в долговечности от 20 до 30 раз. Оба графика долговечности имеют одинаковый подъем, так что кажется допустимым непосредственный перенос увеличения долговечности на эксплуатационные условия.

При этом возможны изоляции с долей наночастиц до 35 вес.%.

Изобретение впервые показывает неожиданный, замедляющий эрозию эффект связующих веществ, таких как органические соединения кремния, которые имеются в смоле, при добавлении наполнителя в виде наночастиц. Благодаря вводу связующего вещества в смолу перед наполнителем в виде наночастиц достигаются неожиданно хорошие результаты. Рассматривается, можно ли объяснить хорошие результаты, которые пояснены на фиг.2-4, своего рода сшиванием наночастиц при сшивании частиц с органосиланами. Во всяком случае, может быть впечатляюще показано, что подмешивание связующих веществ к смоле перед добавлением наполнителя в виде наночастиц может приводить к значительным преимуществам.


ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ
ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ
ИЗОЛЯЦИОННЫЕ СИСТЕМЫ С УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ЧАСТИЧНОМУ РАЗРЯДУ, СПОСОБ ИХ ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 991-1 000 из 1 427.
25.06.2018
№218.016.672b

Блок разъединителя, имеющий электромагнитный привод

Изобретение касается механического блока разъединителя (1) для прерывания провода. Блок (1) разъединителя включает в себя систему контактов и электромагнитное средство (5, 6) привода. Система контактов имеет первый и второй неподвижные контакты (2, 3), а также направляемый подвижный контакт...
Тип: Изобретение
Номер охранного документа: 0002658318
Дата охранного документа: 20.06.2018
25.06.2018
№218.016.674b

Газоизолированный измерительный преобразователь, имеющий размыкающее устройство

Изобретение относится к области электротехники, в частности к газоизолированным высоковольтным распределительным устройствам, и предназначено для усовершенствования размыкающего устройства измерительного преобразователя. Газоизолированный измерительный преобразователь (1) для измерения высоких...
Тип: Изобретение
Номер охранного документа: 0002658342
Дата охранного документа: 20.06.2018
28.06.2018
№218.016.6861

Способ определения значения отклонения параметра работоспособности по меньшей мере одного компонента газовой турбины и блок управления для газовой турбины

Настоящие изобретения относятся к способу для определения значения отклонения параметра работоспособности, в частности параметра производительности или эффективности по меньшей мере одного компонента газовой турбины и блоку управления для газовой турбины. В соответствии со способом измеряют...
Тип: Изобретение
Номер охранного документа: 0002658869
Дата охранного документа: 25.06.2018
Тип: Изобретение
Номер охранного документа: 0002659092
Дата охранного документа: 28.06.2018
04.07.2018
№218.016.6a3c

Лопатка для турбомашины

Лопатка для турбомашины включает в себя часть аэродинамического профиля и корневую часть. Часть аэродинамического профиля содержит внешнюю стенку, первую и вторую полости. Внешняя стенка имеет стороны нагнетания и всасывания, переднюю и заднюю кромки. Внешняя стенка проходит между передней...
Тип: Изобретение
Номер охранного документа: 0002659597
Дата охранного документа: 03.07.2018
04.07.2018
№218.016.6a47

Паровая турбина

Изобретение относится к паровой турбине (1) с содержащим одну оболочку корпусом (2) турбины, а также со специальными внутренними корпусами (11, 21), расположенными внутри корпуса (2) турбины, внешняя стенка которой имеет возможность вращения вокруг оси турбины, валом. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002659633
Дата охранного документа: 03.07.2018
04.07.2018
№218.016.6aa9

Способ оплавления трещин

Изобретение относится к способу ремонта конструктивного элемента (4) с трещинами. Осуществляют оплавление по меньшей мере одной трещины (7, 7’, 7’’, …) конструктивного элемента (4) сварочным лучом (13). Луч (13) перемещают по меньшей мере на некоторых участках поперек направления (10)...
Тип: Изобретение
Номер охранного документа: 0002659527
Дата охранного документа: 02.07.2018
05.07.2018
№218.016.6b00

Симметрирующий трансформатор с жидкостным охлаждением

Настоящая техника представляет собой симметрирующий трансформатор с жидкостным охлаждением, включая подложку с лицевой и противоположной обратной стороной, основной и второстепенный проводящие элементы, расположенные на лицевой и обратной стороне подложки соответственно, первичный и вторичный...
Тип: Изобретение
Номер охранного документа: 0002660060
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6c18

Ротор синхронной реактивной электрической машины

Изобретение относится к области электротехники, в частности к ротору синхронной реактивной электрической машины. Технический результат – улучшение пусковых свойств. Ротор (10) работающей непосредственно в сети электроснабжения синхронной реактивной электрической имеет ось (7). Указанный ротор...
Тип: Изобретение
Номер охранного документа: 0002659814
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6d7c

Обходной канал для охлаждающего средства для газовой турбины, вставляемый в полую охлаждаемую лопатку турбины

Направляющая лопатка турбины имеет полое перо лопатки, в котором расположен обходной канал для охлаждающего средства, имеющий разделенные стенками внутренние и наружные стороны. Обходной канал для охлаждающего средства проходит от первого компонента газовой турбины ко второму компоненту...
Тип: Изобретение
Номер охранного документа: 0002660581
Дата охранного документа: 06.07.2018
Показаны записи 941-943 из 943.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
+ добавить свой РИД