×
26.08.2017
217.015.d8c2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ

Вид РИД

Изобретение

№ охранного документа
0002623389
Дата охранного документа
26.06.2017
Аннотация: Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины. Технический результат - повышение точности и надежности определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины. По способу в скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины. При этом количество размещаемых трубок Вентури определяют количеством сегментов скважины, для которых нужно определить обводненность добываемой нефтеводяной смеси. В процессе добычи осуществляют измерения давления на входе в трубку Вентури и в горловине трубки Вентури. Посредством датчиков температуры осуществляют измерения температуры потока добываемой нефтеводяной смеси на входе в трубку Вентури и температуры стенки трубки Вентури в горловине трубки. По результатам измерений давления и температуры определяют обводненность нефтеводяной смеси, добываемой из выделенного сегмента скважины. 4 з.п. ф-лы, 7 ил.

Предлагаемое изобретение относится к способам определения состава водонефтяной смеси в скважине, в частности к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины поступает нефтеводяная смесь, добываемая из выделенного сегмента скважины.

Измерение состава многофазного потока в стволе скважины является важной задачей при контроле и мониторинге добычи. Это востребовано, главным образом, в высокопродуктивных скважинах с сложным заканчиванием, в частности в многозабойных скважинах и скважинах с регуляторами притока, позволяя оптимизировать добычу нефти, снижая дебит или прекращая добычу из сегментов скважины с высокой обводненностью продукции.

В скважинных многофазных расходомерах обычно используется комбинация трубки Вентури (измеряется падение давления в горле трубки Вентури) и устройств для измерения свойств многофазной смеси. Указанные устройства могут представлять собой гамма-денситометр (например, US 6,776,054), емкостный измеритель фазового состава (US 20120041681) и др.

Так, в заявке US 20120041681 описано применение емкостного измерителя фазового состава. Основной недостаток этого способа заключается в низкой точности измерения обводненности при высоких значениях (более 30%) этой величины.

Техническим результатом, обеспечиваемым при реализации предлагаемого изобретения, является повышение точности и надежности определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины.

В соответствии с предлагаемым способом в скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины поступает нефтеводяная смесь, добываемая из выделенного сегмента скважины. В процессе добычи осуществляют измерения давления на входе в трубку Вентури и в горловине трубки Вентури, а также измерения температуры потока добываемой нефтеводяной смеси на входе в трубку Вентури и температуры стенки трубки Вентури в горловине трубки Вентури. По результатам измерений давления и температуры определяют обводненность нефтеводяной смеси, добываемой из выделенного сегмента скважины.

В соответствии с одним из вариантов осуществления изобретения дополнительно проводят измерения давления и температуры добываемой нефтеводяной смеси за выпускным отверстием трубки Вентури. При этом для измерения температуры за выпускным отверстием трубки Вентури могут быть использованы датчики температуры, установленные на расстоянии 10-20 диаметров трубки Вентури после горловины трубки Вентури.

В соответствии с еще одним вариантом осуществления изобретения все измерения температуры осуществляют при изменении дебита или прекращении добычи.

В соответствии с одним вариантом осуществления изобретения для измерения температуры на входе в трубку Вентури используют датчики температуры, установленные на расстоянии 1-2 диаметра трубки Вентури до начала сужения трубки Вентури.

Изобретение поясняется чертежами, где на фиг. 1 приведена схема трубки Вентури, на фиг. 2 показана зависимость коэффициентов Джоуля-Томпсона для воды и некоторых углеводородов от давления при температуре 80°С, на фиг. 3 приведена зависимость адиабатических коэффициентов для воды и некоторых углеводородов от давления при температуре 80°С, на фиг. 4 показана зависимость нагрева нефтеводяной смеси за выпускным отверстием трубки Вентури вследствие эффекта Джоуля-Томсона от обводненности, на фиг. 5 показано расчетное радиальное распределение скоростей (пунктирные линии) и температуры в начале сужения и в горловине трубки Вентури, на фиг. 6 приведена зависимость повышения температуры стенок в горловине трубки Вентури от обводненности, на фиг. 7 - расчетная зависимость амплитуды адиабатических изменений температуры от обводненности для изменения давления δР=10 бар.

Настоящее изобретение включает измерение давлений, а также измерение температуры, характеризующее фазовый состав добываемой смеси, в трубке Вентури. В скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины поступает нефтеводяная смесь, добываемая из выделенного сегмента скважины. Количество трубок Вентури определяется количеством сегментов скважины, для которых нужно определить обводненность добываемой нефтеводяной смеси. Обводненность добываемой нефтеводяной смеси определяют с помощью измерения давления и температуры, что является важным для долговременного мониторинга добычи нефти, поскольку современные датчики давления и температуры могут более 10 лет работать в условиях, существующих в стволе скважины. Предлагаемый способ может быть использован в сочетании с известными способами, что позволяет повысить точность определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины.

В соответствии с изобретением для определения обводненности используют следующие температурные эффекты в потоке добываемой из выделенного сегмента нефтеводяной смеси, которые зависят от состава нефтеводяной смеси:

- нагревание потока в пристеночной области и стенок в горловине трубки Вентури вследствие эффектов вязкой диссипации,

- нагревание потока нефтеводяной смеси вследствие необратимого падения давления в процессе торможения потока после прохождения через трубку Вентури (эффект Джоуля-Томпсона),

- изменения температуры потока, вызванные резкими изменениями давления в скважине, которые зависят от состава водонефтяной смеси.

Схема трубки Вентури приведена на Фиг. 1. Здесь (1) - вход в трубку Вентури, (2) - горловина, (3) - выпускное отверстие трубки Вентури, T2w - температура стенок в горловине трубки Вентури.

Измерения давления осуществляют посредством датчиков давления (например, электронными датчиками абсолютного давления GE UNIK 5000), а измерения температуры - посредством высокочувствительных датчиков температуры, например калиброванных тонкопленочных платиновых термометров сопротивления Hayashi Denko CRZ-1632-100-A-1. Измерение температуры стенок в горловине трубки Вентури можно проводить через канал, просверленный перпендикулярно оси трубки, в котором располагался датчик температуры. Для герметизации и теплового контакта этот канал заполнялся теплопроводящим полимером.

Как следует из одномерных уравнений для количества движения и энергии, температура потока в трубке Вентури определяется следующим выражением:

где Р1, Р2 и Р3 представляют собой значения статического давления на входе в трубку Вентури, в горловине и за выпускным отверстием соответственно; ΔР(х) представляет собой необратимое падение давления, T1 - температура потока добываемой нефтеводяной смеси на входе в трубку Вентури, ρ, ср, μJT и η - плотность, теплоемкость, коэффициент Джоуля-Томпсона и адиабатический коэффициент нефтеводяной смеси соответственно.

Температура нефтеводяной смеси за выпускным отверстием трубки Вентури (где V=V1) определяется полными необратимыми потерями давления и коэффициентом Джоуля-Томпсона флюида:

В случае гомогенной смеси нефти и воды (что типично для потока, проходящего через горловину трубки Вентури в нефтяных скважинах), плотность нефтеводяной смеси, адиабатический коэффициент и коэффициент Джоуля-Томпсона зависят от обводненности (γ) (см. уравнения 3-65) и изменения температуры нефтеводяной смеси в трубке Вентури могут быть использованы для определения доли воды в смеси.

Поскольку нефть представляет собой сложную смесь различных углеводородов, адиабатический коэффициент и коэффициент Джоуля-Томпсона в каждом конкретном случае следует определять из результатов лабораторных исследований зависимости между давлением, объемом и температурой с использованием образцов нефти из конкретных скважин. На Фиг. 2 и 3 представлены примеры зависимости этих коэффициентов от давления (при температуре 80°С) для некоторых углеводородов, присутствующих в нефти. Из указанных диаграмм видно, что, например, при давлении 150 бар коэффициент Джоуля-Томпсона нефти примерно в 1,5-2 раза больше, чем для воды, и адиабатический коэффициент больше в 4-6 раз.

На Фиг. 4 показаны расчетные зависимости изменений температуры потока за выпускным отверстием трубки Вентури от обводненности. Расчеты выполнялись для значений коэффициента Джоуля-Томпсона для воды -0,02 К/бар и для нефти -0,04 К/бар. Разница давлений между входным отверстием и горловиной трубки Вентури Р12 находилась в интервале 0,7-0,8 бар. Скорость потока на входе в трубку Вентури - 2 м/с. Такая скорость является типичной для размещенных в стволе скважины устройств контроля в высокопродуктивных скважинах.

Из этого чертежа видно, что в зависимости от содержания воды изменение разности температур T13 составляет около 7 мК, что представляет собой величину, измеримую современными устройствами, размещаемыми в стволе скважины, и может быть использовано для оценки содержания воды в нефтеводяной смеси.

Высокочувствительные датчики температуры следует устанавливать в следующих точках: 1-2 диаметра трубки Вентури до начала сужения трубки Вентури (для измерения температуры на входе) и 10-20 диаметров трубки Вентури после горловины трубки Вентури (для измерения повышения температуры, вызванного эффектом Джоуля-Томсона).

Другим, значительно более сильным, тепловым эффектом, который может быть использован для определения обводненности, является нагрев стенки трубки Вентури, вызванный вязкой диссипацией. Численные расчеты показывают, что вследствие эффекта вязкой диссипации в потоке нефтеводяной смеси температура в пограничном слое у стенки трубки Вентури и температура стенки в горловине может существенно превышать температуру T1 на входе трубки Вентури.

На Фиг. 5 показано расчетное радиальное распределение скоростей (пунктирные линии) и температуры в начале сужения и в горловине трубки Вентури. Расчеты выполнялись для скорости нефтеводяной смеси на входе в трубку Вентури 3,5 м/с. Из чертежа видно, что толщина динамического пограничного слоя в этом случае составляет около 1 мм. Толщина теплового пограничного слоя существенно меньше (менее 0,3 мм), и увеличение температуры стенки достигает 650 мК.

Повышение температуры стенок в горловине трубки Вентури зависит от состава нефтеводяной смеси и может быть использовано для оценки обводненности. На Фиг. 6 показана расчетная зависимость повышения температуры стенок от обводненности. Расчеты выполнялись для средней скорости потока на входе трубки Вентури 2 м/с и вязкости нефти, в 3 раза превышающей вязкость воды. Из чертежа видно, что температура стенок сильно зависит от обводненности: 150 мК для чистой воды и 580 мК для нефти. Вследствие гораздо более сильного температурного сигнала в этом случае можно получить более точную оценку обводненности смеси, чем из повышения температуры вследствие эффекта Джоуля-Томсона за выходным отверстием трубки Вентури.

Температура стенок в горловине трубки Вентури зависит от геометрии трубки Вентури, дебита скважины, характеристик нефти и содержания воды. Основываясь на моделировании трубки Вентури (используя методы вычислительной гидродинамики) и лабораторных экспериментах, следует подготовить набор предварительных расчетов для различных характеристик нефти. Указанные предварительные расчеты следует использовать для оценки обводненности в скважинах.

Другой тепловой эффект, который может быть использован для определения фазового состава добываемой нефтеводяной смеси, представляет собой адиабатический нагрев или адиабатическое охлаждение нефтеводяной смеси, вызванное резкими изменениями давления δР в стволе скважины (например, при изменении дебита или прекращении добычи):

Эти изменения определяются адиабатическим коэффициентом смеси (4). На Фиг. 7 показана расчетная зависимость амплитуды адиабатических изменений температуры от обводненности для изменения давления δР=10 бар.

Специфика предлагаемого способа определения фазового состава добываемой нефтеводяной смеси по ее адиабатическому нагреву/охлаждению заключается в использовании измерений температуры за выпускным отверстием трубки Вентури, что обеспечивает надежную гомогенизацию потока, тем самым уменьшая неопределенность, связанную с нахождением измерителя температуры в отдельной фазе, а не в гомогенизированной смеси.

Согласно настоящему изобретению предлагается оценивать обводненность добываемой нефтеводяной смеси, основываясь на высокоточном измерении давления и температуры потока на входе (P1, T1) в трубку Вентури и измерении температуры стенки T2w и давления Р2 в горловине трубки Вентури; измерения могут быть также дополнены измерением давления потока и температуры потока за выходным отверстием (Р3, Т3) трубки Вентури в процессе добычи нефти. Вычисление обводненности выполняют по формулам (3)-(6), с учетом характеристик добываемой нефти.

Вычисление обводненности по нагреву стенок в горловине трубки Вентури выполняют в соответствии со значениями P1, T1, Р2, T2w, сравнивая результаты вычислений с соответствующими предварительными расчетами, основанными на характеристиках добываемой нефти.

Возможно также осуществление измерений всеми указанными измерителями изменений температуры потока через трубку Вентури, вызванных резкими изменениями давления при изменении дебита или прекращении добычи. Вычисление содержания воды выполняют по формуле (7), принимая во внимание зависимость адиабатического коэффициента (5) от обводненности и свойств добываемой нефти.

Предлагаемый способ может обеспечить надежную оценку обводненности нефтеводяной смеси, добываемой из любого выделенного сегмента скважины, с помощью размещенной в стволе скважины трубки Вентури путем получения нескольких значений, относящихся к одной и той же обводненности. Это обеспечивает возможность уменьшения неопределенности окончательного значения обводненности, используя совместный анализ всех или только некоторых из указанных измерений, принимая во внимание соответствующие ошибки измерения и значения температурных сигналов.

В случае выявления сегмента с высокой обводненностью добываемой нефтеводяной смеси добычу из такого сегмента скважины прекращают.


СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 112.
03.07.2019
№219.017.a417

Распознание расклинивающего агента с помощью мобильного устройства

Изобретение относится к анализу размеров и формы частиц. Техническим результатом является быстрый и репрезентативный анализ размеров и формы частиц. Способ анализа размеров и формы частиц, используемых в скважинных операциях, содержащий: получение изображения подложки, включающего эталон...
Тип: Изобретение
Номер охранного документа: 0002693201
Дата охранного документа: 01.07.2019
19.03.2020
№220.018.0d23

Способ вывода на режим скважины, пробуренной в естественно трещиноватом пласте

Изобретение относится к области технологий подготовки скважины, пробуренной в естественно трещиноватом пласте, к выводу на режим, в частности к оптимизации параметров, оказывающих непосредственное влияние на повышение продуктивности скважины после проведения гидравлического разрыва пласта...
Тип: Изобретение
Номер охранного документа: 0002717019
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0edc

Способ определения физических характеристик однородной среды и ее границ

Изобретение относится к области геофизики и может быть использовано для определения границ однородной среды при обработке сейсмических данных. Согласно заявленному способу осуществляют регистрацию гармонической волны, представляющей собой колебание физической величины вдоль одного...
Тип: Изобретение
Номер охранного документа: 0002717162
Дата охранного документа: 18.03.2020
07.06.2020
№220.018.2527

Способ определения межфазного натяжения между двумя флюидами

Изобретение относится к способам определения межфазного натяжения (МН) между двумя флюидами. Техническим результатом является повышение точности определения МН между двумя флюидами. В соответствии с изобретением предварительно определяют плотность флюидов при заданных давлении и температуре и...
Тип: Изобретение
Номер охранного документа: 0002722896
Дата охранного документа: 04.06.2020
31.07.2020
№220.018.3923

Способ определения работающих интервалов глубин нефтяных и газовых пластов

Изобретение относится к промыслово-геофизическим исследованиям, а именно, к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения работающих интервалов глубин нефтяных и газовых пластов. В соответствии со способом...
Тип: Изобретение
Номер охранного документа: 0002728123
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3952

Способ определения распределения объемных долей флюидов по стволу скважины

Изобретение относится к промыслово-геофизическим исследованиям и предназначено для определения объемных долей флюидов по стволу скважины. Техническим результатом заявленного изобретения является повышение точности, достоверности и надежности определения объемных долей флюидов по стволу...
Тип: Изобретение
Номер охранного документа: 0002728119
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.396d

Способ определения характеристик фильтрационного потока в околоскважинной зоне пласта

Изобретение относится к промыслово-геофизическим исследованиям, а именно к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения характеристик фильтрационных потоков жидкостей и газа в околоскважинной зоне пласта, а также...
Тип: Изобретение
Номер охранного документа: 0002728121
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
23.04.2023
№223.018.51d5

Способ прогнозирования гидроразрыва пласта, способ гидроразрыва пласта, способы прогнозирования рисков гидроразрыва пласта

Изобретение относится к нефтегазовой промышленности и может найти применение при стимулировании подземного пласта с помощью операции гидравлического разрыва (ГРП) пласта, в частности, при использовании методов математического моделирования, которые позволяют делать прогноз геометрии трещины ГРП...
Тип: Изобретение
Номер охранного документа: 0002730576
Дата охранного документа: 24.08.2020
20.05.2023
№223.018.67b5

Способ и система измерения краевого угла смачивания

Использование: для измерения краевого угла смачивания для капли флюида на поверхности образца материала в окружении другого флюида. Сущность изобретения заключается в том, что образец материала, имеющий плоскую поверхность, помещают в рентгенопрозрачную ячейку, установленную на регулируемой...
Тип: Изобретение
Номер охранного документа: 0002794567
Дата охранного документа: 21.04.2023
Показаны записи 81-81 из 81.
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
+ добавить свой РИД