×
26.08.2017
217.015.d818

Результат интеллектуальной деятельности: Устройство коррекции погодных условий

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метеорологии. Устройство выполнено в виде спиральной антенны (1) с осевой диаграммой направленности (2), ориентированной в верхнюю полусферу для вертикального зондирования слоя F ионосферы (5) в диапазоне волн 25…30 м. Длина витка (8) спирали ~30 м, число витков 7, шаг витка 4,5 м. Антенна подвешена на телескопических мачтах (6) из композитного материала высотой 32 м, расчаленных растяжками (7). Витки (8) спирали закреплены на мачтах (6) и изолированы от них силиконовыми изоляторами (9). Антенна запитана от СВЧ передатчика (3) с регулируемой частотой излучения. При этом один из полюсов источника питания (4) передатчика подключен к заземлителю (10) антенны, выполненному из винтовых труб (11), заглубленных в грунт, по радиально-кольцевой параллельной схеме в режиме зеркального противовеса. Обеспечивается создание теплового луча с энергией, достаточной для обеспечения испарения облачного покрова зависшего циклона и обеспечивающей возникновение струйных течений и восстановление естественной циркуляции воздушных масс. 5 ил.

Изобретение относится к области метеорологии и может найти применение в региональных Центрах МЧС для восстановления естественной циркуляции воздуха при зависании циклонов.

Энергия атмосферных процессов столь велика, что использование прямых методов воздействия на них с энергетической точки зрения невозможно. Основной принцип, который реализуется при активных методах воздействия на метеопроцессы, - это создание условий, выполняющих роль «спускового крючка» в запуске естественных лавинообразных процессов.

Для разрушения мощных циклонов, вызывающих стихийные бедствия (наводнения, торнадо) необходим источник, соизмеримый с ними по энергии. Таким источником является поток солнечной радиации. Энергия потока на границе космос-атмосфера составляет порядка ~1,5 кВт/м2, отражая или фокусируя который, можно влиять на метеопроцессы. Между космосом и атмосферой на высотах от 80 до 420 км находятся ионосферные слои. Изменяя оптические свойства ионосферы, путем ее зондирования на частотах ниже критической (F<20 МГц), чтобы излучаемая мощность поглощалась ионосферой, можно регулировать мощность потока солнечной радиации в широких пределах. Известна «Антенна для зондирования ионосферы», патент RU 2504054, H.01.Q, 3/00, 2014 г. - аналог.

Антенна для зондирования ионосферы выполнена в виде двух, скрещенных в ортогональных плоскостях, ромбов, с длинами ребер 58 м одного и 26 м второго ромба, подвешенных на опорной мачте из композитного материала высотой 32 м, создающей геометрию главной диагонали ромбов и двух пар вспомогательных мачт, высотой 9 м, для подвески вторых углов ромбов, растяжек расчаливания механического крепления мачт из полимерного материала и жил токонесущих проводов ромбов, расположенных по образующим цилиндра в качестве излучателей антенны, нагруженных на общее сопротивление, согласованное для режима бегущих волн в излучателях, подключенное к многолучевому заземлителю, выполненному по параллельной схеме, для режима зеркального противовеса. Недостатками аналога следует считать:

- большие потери энергии, подводимой к антенне в согласованном для режима бегущих волн сопротивлении нагрузки (до 40%);

- высокий уровень боковых лепестков, снижающих энергетический потенциал радиолинии и коэффициент направленного действия антенны.

Ближайшим аналогом к заявленному техническому решению является «Способ коррекции погодных условий», патент RU №2568752, Н.01.Т 23/00, А.01.G, 15/00 - 2015 г. В способе ближайшего аналога осуществляют длительное воздействие на локальную область атмосферы тепловым лучом сфокусированного солнечного потока посредством оптической линзы многокилометровых размеров, создаваемой в ионосфере при воздействии на нее направленным лучом СВЧ излучения на частоте ниже критической, с изменяемой длиной волны и мощностью излучения для регулирования диэлектрической проницаемости ионосферы так, чтобы фокальная плоскость создаваемой линзы располагалась у поверхности Земли.

Устройство ближайшего аналога содержит радиопередатчик, работающий в режиме параметров излучения (частота, мощность, угол зондирования) для создания оптических линз в ионосфере, нагруженный на ромбическую антенну бегущих волн, образованную двумя скрещенными в ортогональных плоскостях ромбами с лучами (сторонами), для увеличения диапазонности выполненными в виде диполей Надененко, подвешенных на высокой мачте из композитного материала, выполняющей роль главной диагонали ромбов, вспомогательных мачт растяжки ромбов, общего волнового сопротивления, заземлителя, выполненного из стандартных свайных труб для создания в лучах ромбов режима зеркального отражения электромагнитного поля от поверхности Земли. Недостатками ближайшего аналога следует считать:

- большие потери СВЧ энергии, подводимой к антенне, в согласованном для режима бегущих волн сопротивлении, нагрузки;

- трудность реализации расчетных параметров оптических линз, создаваемых в ионосфере, при несимметричности осевой диаграммы направленности антенны из двух скрещенных ромбов с различными размерами ребер.

Задача, решаемая заявленным техническим решением, состоит в реализации точных параметров оптической линзы в слое F2 ионосферы и увеличении энергетического потенциала радиолинии путем оптимизации параметров осесимметричной спиральной антенны.

Поставленная задача решается тем, что устройство коррекции погодных условий выполнено в виде спиральной антенны с осевой диаграммой направленности, ориентированной в верхнюю полусферу для вертикального зондирования слоя F2 ионосферы в диапазоне волн 25…30 м, с длиной витка спирали ~30 м, числом витков 7, шагом витка 4,5 м, подвешенной на телескопических мачтах из композитного материала высотой 32 м, расчаленных растяжками, витки спирали закреплены на мачтах и изолированы от них силиконовыми изоляторами, с запиткой антенны от СВЧ передатчика с регулируемой частотой излучения, второй полюс источника питания передатчика подключен к заземлителю антенны, выполненному из винтовых труб, заглубленных в грунт, по радиально-кольцевой параллельной схеме в режиме зеркального противовеса.

Изобретение поясняется чертежами, где:

фиг. 1 - функциональная схема устройства;

фиг. 2 - плотность электронной концентрации в слоях ионосферы;

фиг. 3 - геометрические соотношения в тракте зондирования;

фиг. 4 - зависимость относительного изменения коэффициентов преломления от разности температур ионизированного газа;

фиг. 5 - силиконовые изоляторы крепления спиралей антенны на телескопических мачтах.

Устройство коррекции погодных условий фиг 1 содержит спиральную антенну 1 с диаграммой направленности 2, подключенную к СВЧ передатчику 3, питаемому от источника 4, обеспечивающую зондирование ионосферного слоя 5 (F2) на частоте ниже критической, подвешенную на телескопических мачтах 6 из композитного материала, расчаленных растяжками 7, витки спиралей антенны 8 закреплены на мачтах и изолированы от них силиконовыми изоляторами 9, второй полюс источника питания 4 подключен к заземлителю 10, выполненному из винтовых труб 11, заглубленных в грунт по радиально-кольцевой параллельной схеме в режиме зеркального противовеса антенны.

Динамика функционирования элементов устройства состоит в следующем.

Из аналитического соотношения ближайшего аналога для комплексной диэлектрической проницаемости ионизированного газа следует, что наибольший диапазон ее изменения соответствует максимальным значениям плотности электронной концентрации N, где ω - частота зондирующего сигнала, υ - количество соударений молекул. Из графика фиг. 2 [см., например, «Космонавтика. Энциклопедия, под ред. В.П. Глушко, М., Изд. Энциклопедия, 1985 г., стр. 142] максимальная плотность электронной концентрации соответствует слою F2 со значениями N[8…25]⋅1011 1/м3. Поэтому для эффективного регулирования диэлектрической проницаемости оптической линзы, создаваемой в ионосфере при ее зондировании на частоте ниже критической, следует воздействовать на слой F2.

Локальному разогреву подвергается участок ионосферы, попадающий в створ диаграммы направленности источника высокочастотного облучения. Поскольку энергия облучения в каждой точке пространства повторяет кривизну диаграммы направленности, то и температура разогрева ионосферы в пространстве является зеркальным отображением формы диаграммы направленности. Диэлектрическая проницаемость, а с ней и коэффициент преломления участков ионосферы является функцией кривизны диаграммы направленности и мощности облучения. В первом приближении можно считать, что радиус кривизны создаваемых оптических линз зеркально отображает радиус кривизны диаграммы направленности антенны. Оптическая сила линзы (диноптрия) определяется радиусами сферических поверхностей (R1, R2) линзы и коэффициентов преломления среды n1 и вещества линзы N2 [см. Учебник по физике Л.С. Жданов, Физматгиз, М., 1983 г., стр. 393. Оптическая сила линзы и единица ее измерения]:

Геометрические соотношения в тракте зондирования иллюстрируются фиг. 3. Чтобы фокальная плоскость создаваемой линзы располагалась у поверхности Земли, должно выполняться соотношение: F≈h [высота слоя F2 порядка 300 км]. Для критических частот зондирования выполняется соотношение ω2≤υ2 [см., например, Г.А. Зисман, О.М. Тодес «Курс общей физики» учебник, Физматгиз, Изд. Наука, М., 1964 г., 25 «Число столкновений и длина свободного пробега молекул»]. В свою очередь количество соударений зависит от средней скорости молекул газа и длины свободного пробега. Поскольку средняя скорость движения молекул пропорциональна температуре: [см. там же, стр. 125], то количество соударений υ также пропорционально . В условиях глубокого вакуума и сверхнизких температур открытого космоса диэлектрическая проницаемость ионизированного газа меньше единицы. При интервале изменения (n2-n2) порядка 0,1 радиус кривизны создаваемой линзы должен составлять порядка 30 км. Из геометрических соотношений фиг. 3 следует, что радиусу кривизны диаграммы направленности 30 км ширина ее диаграммы по уровню половинной мощности составит: (2Θ0,5)°≈23°.

Характер направленного действия спиральной антенны зависит от соотношения геометрических размеров витка спирали L и длины волны λ. Диаграмма направленности вдоль оси антенны представляется как произведение диаграммы направленности одного витка (Fвитка~cosΘ) и множителя системы из n (число витков) ненаправленных излучателей: [см., например, А.Л. Драбкин, В.Л. Зузенко, «Антенно-фидерные устройства», М., Сов. Радио, 1964 г., стр. 690-694]

где Θ - угол относительно оси спирали;

d - расстояние между витками;

k - волновое число, равное 2π/λ;

ξ - λ12, отношение длины волны в спиральной антенне к длине волны в свободном пространстве, обычно имеет порядок 1,1...1,4.

Исходя из рабочего диапазона частот (ниже критической частоты слоя F2) и требуемой ширины диаграммы направленности, определены расчетные параметры спиральной антенны: длина витка спирали L=30 м, длина рабочей волны % [25…30] м, число витков n=7, шаг витка 4,5 м. Энергозатраты на разогрев ионосферы зависят от геометрического объема участка ионосферы, попадающего в створ диаграммы направленности антенны, и остаточного количества молекул на данной высоте ионосферного слоя. По результатам измерений на МКС, температура открытого космоса на высоте слоя ионосферы F2 составляет T1=(-200…-250)°С или (40…70) К. Остаточное количество молекул глубокого вакуума открытого космоса определяется барометрической формулой:

где р0 - давление у поверхности Земли, n0 - количество молекул в единице объема, у поверхности Земли. В одном моле любого газа содержится число Авогадро молекул 6,8⋅1023. Количество молекул в м3 составляет n0≈3⋅1025 1/м3.

Соответственно, на средней высоте слоя F2 число молекул составит n(270 км)≈1011 1/м3.

Для перечисленных выше параметров антенны с шириной диаграммы направленности 2Θ=23° объем пространства зондирования в форме сегмента составляет: V≈2,5⋅1015 м3, а остаточное количество ионов в этом объеме составит ≈2,5⋅1026 или 6 киломолей.

В соответствии с уравнением Менделеева-Клапейрона для нагревания любого газа на один градус необходимо затратить энергию ~2 ккал/кмоль град. Учитывая, что одна ккал эквивалентна 4,18 кДж работы, на разогрев ионосферного слоя на один градус необходимо потратить энергию 50 кДж.

Используя разложение в биноминальный ряд функции комплексной диэлектрической проницаемости ионизированного газа можно получить, что Зависимость относительного изменения коэффициента преломления создаваемой линзы от относительного изменения температуры нагретого и смежного слоев иллюстрируется фиг. 4.

Искомое образование оптической линзы происходит при значениях температур, превышающих на 0,1 температуру смежного слоя. В абсолютных значениях ∆T составляет порядок 10…20 К.

Абсолютные энергозатраты оцениваются величиной

50кДж⋅20 К=100 кДж.

Устройство реализовано на существующей технической базе. В качестве источника СВЧ может быть использован передатчик войсковой радиостанции Р-110.

Телескопические мачты подвески спиральной антенны из композитного материала высотой 32 м [см., например, Научно-производственное предприятие АпАТек, конструктивные профили, см. Internet, http://www.fundex.su/tehnologia-vintovyh-svaj/].

Эффективность устройства характеризуется возможностью создания у поверхности Земли теплового луча, сфокусированного солнечным потоком с энергией порядка 109 кВт/м2, способного (прожечь) испарить облачный покров зависшего циклона, вызвать течения в атмосфере и восстановить естественную циркуляцию атмосферных процессов.

Устройство коррекции погодных условий выполнено в виде спиральной антенны с осевой диаграммой направленности, ориентированной в верхнюю полусферу для вертикального зондирования слоя F ионосферы в диапазоне волн 25…30 м, с длиной витка спирали ~30 м, числом витков 7, шагом витка 4,5 м, подвешенной на телескопических мачтах из композитного материала высотой 32 м, расчаленных растяжками, витки спирали закреплены на мачтах и изолированы от них силиконовыми изоляторами, с запиткой антенны от СВЧ передатчика с регулируемой частотой излучения, второй полюс источника питания передатчика подключен к заземлителю антенны, выполненному из винтовых труб, заглубленных в грунт, по радиально-кольцевой параллельной схеме в режиме зеркального противовеса.
Устройство коррекции погодных условий
Устройство коррекции погодных условий
Устройство коррекции погодных условий
Устройство коррекции погодных условий
Источник поступления информации: Роспатент

Показаны записи 11-20 из 33.
27.10.2014
№216.013.016f

Способ отслеживания границы зоны "лес-тундра"

Изобретение относится к лесному хозяйству и может быть использовано при оценке динамики глобальных климатических изменений в Арктике. Согласно способу проводят спектрометрические измерения в переходной зоне 69°…70° с.ш., содержащей тестовые участки в диапазоне 0,55…0,68 мкм и 0,73…1,1 мкм, а...
Тип: Изобретение
Номер охранного документа: 0002531765
Дата охранного документа: 27.10.2014
27.07.2015
№216.013.6823

Способ определения рейтинга вида пород для плана озеленения

Изобретение относится к лесному хозяйству и может найти применение при планировании мероприятий по озеленению городских территорий. Способ включает составление каталога древесных пород обследуемого городского поселения с известной экологической обстановкой и соответствующей ему территории...
Тип: Изобретение
Номер охранного документа: 0002558212
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.683e

Устройство коррекции погодных условий

Устройство коррекции погодных условий может быть использовано для изменения естественной циркуляции воздуха при антициклональных погодных условиях. Устройство содержит линейный ускоритель (1) для бомбардировки молекул воздуха коллимированным пучком высокоэнергетичных электронов в вертикальной...
Тип: Изобретение
Номер охранного документа: 0002558239
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69cb

Вибродатчик с элементом цифровой калибровки

Изобретение относится к измерительной технике и предназначено для вибродиагностики технологического оборудования. Вибродатчик с элементом цифровой калибровки выполнен в виде металлического корпуса с фланцем для крепления на контролируемом объекте. Внутри корпуса датчика размещены первичный...
Тип: Изобретение
Номер охранного документа: 0002558636
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69d0

Датчик воздушного зазора

Изобретение относится к измерительной технике и может найти применение при конструировании систем виброконтроля габаритных валов роторных машин в электрогенераторах, при эксплуатации турбонасосов, в нефтегазовой промышленности и других областях. Датчик воздушного зазора выполнен в виде двух...
Тип: Изобретение
Номер охранного документа: 0002558641
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.9110

Способ коррекции погодных условий

Изобретение относится к области метеорологии и сельского хозяйства. Способ включает длительное воздействие на локальную область атмосферы тепловым лучом сфокусированного солнечного потока. Луч получают с помощью оптической линзы многокилометровых размеров. Линзу создают в ионосфере при...
Тип: Изобретение
Номер охранного документа: 0002568752
Дата охранного документа: 20.11.2015
27.03.2016
№216.014.c77a

Способ определения объема выбросов в атмосферу от природных пожаров

Изобретение относится к области дистанционного мониторинга природной среды и касается способа определения объема выбросов в атмосферу от природных пожаров. Способ включает синхронную съемку поверхности установленными на космическом носителе цифровой видеокамерой и гиперспектрометром, выделение...
Тип: Изобретение
Номер охранного документа: 0002578515
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.360e

Способ контроля пирологического состояния подстилающей поверхности

Изобретение относится к области дистанционного зондирования Земли из космоса. Технический результат заключается в повышении устойчивости и достоверности результатов контроля. Для осуществления контроля проводят дистанционное зондирование подстилающей поверхности средствами, установленными на...
Тип: Изобретение
Номер охранного документа: 0002581783
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.45b7

Способ определения индекса состояния атмосферы для антропогенных источников загрязнения

Изобретение относится к области экологии, а именно к дистанционным методам мониторинга природных сред и к санитарно-эпидемиологическому контролю промышленных регионов. Способ включает измерение спектра падающего светового потока, прошедшего толщу атмосферы, фотометрами глобальной сети...
Тип: Изобретение
Номер охранного документа: 0002586939
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.54d0

Устройство инициирования осадков в атмосфере

Изобретение относится к области воздействия на атмосферу. Устройство инициирования осадков в атмосфере выполнено из двух разнородных источников ионизации молекул воздуха в охватываемом рабочем объеме. Источники работают поочередно в синхронизованном по мощности и времени импульсном режиме путем...
Тип: Изобретение
Номер охранного документа: 0002593215
Дата охранного документа: 10.08.2016
Показаны записи 11-20 из 55.
27.07.2015
№216.013.683e

Устройство коррекции погодных условий

Устройство коррекции погодных условий может быть использовано для изменения естественной циркуляции воздуха при антициклональных погодных условиях. Устройство содержит линейный ускоритель (1) для бомбардировки молекул воздуха коллимированным пучком высокоэнергетичных электронов в вертикальной...
Тип: Изобретение
Номер охранного документа: 0002558239
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69cb

Вибродатчик с элементом цифровой калибровки

Изобретение относится к измерительной технике и предназначено для вибродиагностики технологического оборудования. Вибродатчик с элементом цифровой калибровки выполнен в виде металлического корпуса с фланцем для крепления на контролируемом объекте. Внутри корпуса датчика размещены первичный...
Тип: Изобретение
Номер охранного документа: 0002558636
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69d0

Датчик воздушного зазора

Изобретение относится к измерительной технике и может найти применение при конструировании систем виброконтроля габаритных валов роторных машин в электрогенераторах, при эксплуатации турбонасосов, в нефтегазовой промышленности и других областях. Датчик воздушного зазора выполнен в виде двух...
Тип: Изобретение
Номер охранного документа: 0002558641
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.9110

Способ коррекции погодных условий

Изобретение относится к области метеорологии и сельского хозяйства. Способ включает длительное воздействие на локальную область атмосферы тепловым лучом сфокусированного солнечного потока. Луч получают с помощью оптической линзы многокилометровых размеров. Линзу создают в ионосфере при...
Тип: Изобретение
Номер охранного документа: 0002568752
Дата охранного документа: 20.11.2015
27.03.2016
№216.014.c77a

Способ определения объема выбросов в атмосферу от природных пожаров

Изобретение относится к области дистанционного мониторинга природной среды и касается способа определения объема выбросов в атмосферу от природных пожаров. Способ включает синхронную съемку поверхности установленными на космическом носителе цифровой видеокамерой и гиперспектрометром, выделение...
Тип: Изобретение
Номер охранного документа: 0002578515
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.360e

Способ контроля пирологического состояния подстилающей поверхности

Изобретение относится к области дистанционного зондирования Земли из космоса. Технический результат заключается в повышении устойчивости и достоверности результатов контроля. Для осуществления контроля проводят дистанционное зондирование подстилающей поверхности средствами, установленными на...
Тип: Изобретение
Номер охранного документа: 0002581783
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.45b7

Способ определения индекса состояния атмосферы для антропогенных источников загрязнения

Изобретение относится к области экологии, а именно к дистанционным методам мониторинга природных сред и к санитарно-эпидемиологическому контролю промышленных регионов. Способ включает измерение спектра падающего светового потока, прошедшего толщу атмосферы, фотометрами глобальной сети...
Тип: Изобретение
Номер охранного документа: 0002586939
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.54d0

Устройство инициирования осадков в атмосфере

Изобретение относится к области воздействия на атмосферу. Устройство инициирования осадков в атмосфере выполнено из двух разнородных источников ионизации молекул воздуха в охватываемом рабочем объеме. Источники работают поочередно в синхронизованном по мощности и времени импульсном режиме путем...
Тип: Изобретение
Номер охранного документа: 0002593215
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.58f3

Способ определения дигрессии надпочвенного покрова в арктической зоне

Изобретение относится к области экологии и может найти применение при контроле состояния территорий вечной мерзлоты в целях раннего обнаружения критических состояний. Способ определения дигрессии надпочвенного покрова в Арктической зоне включает регистрацию двух разнотипных сигналов средствами,...
Тип: Изобретение
Номер охранного документа: 0002588179
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.644e

Глобальная система измерений предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано для измерения предвестников землетрясений. Сущность: система содержит множество первичных датчиков-фотометров (1) контроля оптической плотности атмосферы, функционирующих в режиме отслеживания превышения сигнала...
Тип: Изобретение
Номер охранного документа: 0002589444
Дата охранного документа: 10.07.2016
+ добавить свой РИД