×
26.08.2017
217.015.d812

Результат интеллектуальной деятельности: СПОСОБ КОМПОНОВКИ ПРИЕМНОЙ СИСТЕМЫ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА ДЛЯ СВЯЗИ С НИЗКООРБИТАЛЬНЫМИ ОБЪЕКТАМИ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к бортовому оборудованию геостационарных космических аппаратов (КА) для ретрансляции данных между низкоорбитальными КА и центрами управления и приема сообщений. На антенной штанге (14) вблизи рефлектора (13) параболической антенны закреплены с помощью установочных плит (19) два блока (16, 17) малошумящих усилителей ретранслятора, работающих в одинаковых диапазонах частот. В рабочем состоянии КА блок (16) размещён на северной стороне штанги (14), а блок (17) – на южной. Боковые поверхности корпусов блоков теплоизолированы (от действия прямых лучей Солнца), а открытая (верхняя или нижняя) поверхность служит в качестве радиатора-излучателя. В периоды равноденствий блоки (16, 17) в одинаковой степени освещены Солнцем (в основном сбоку, где имеется теплоизоляция). В периоды солнцестояний нагревается солнечными лучами преимущественно один из блоков, а другой - находится в тени штанги (14). Техническим результатом изобретения является повышение качества (G/T, где G – усиление антенны, T - шумовая температура) приемной системы ретранслятора путём улучшения температурных условий эксплуатации элементов этой системы. 4 ил.

Изобретение относится к области конструирования бортовых ретрансляционных комплексов (БРК) геостационарных космических аппаратов (ГКА), предназначенных для ретрансляции информации между низкоорбитальными объектами ракетно-космической техники (РКТ) и центрами управления и приема сообщений.

Как показывает мировой и отечественный опыт, при информационном обмене с объектами РКТ (ракетами-носителями, разгонными блоками, космическими аппаратами различного назначения) одной из главных задач ГКА является ретрансляция низкоскоростной телеметрической информации от объектов РКТ с ненаправленными антеннами и высокоскоростной информации от космических аппаратов дистанционного зондирования Земли. Для решения этой задачи БРК ГКА должен обладать по возможности большим значением параметра качества на прием G/T. Увеличение коэффициента усиления приемной антенны G достигается установкой на ГКА перенацеливаемых антенн большого диаметра, как это имеет место на зарубежных ГКА семейства TDRS и российских ГКА серии «Луч-5» [1].

Немаловажную роль в повышении параметра G/T играет и снижение шумовой температуры Т приемной системы ГКА, состоящей из антенны, фидерного тракта и приемного устройства, в качестве которого выступает малошумящий усилитель (МШУ).

Как известно, полная эквивалентная шумовая температура приемной системы, пересчитанная ко входу МШУ, может быть описана следующим выражением [2, с. 172]:

где TA - эквивалентная шумовая температура антенны; To - абсолютная температура окружающей среды; ТМШУ - эквивалентная шумовая температура МШУ, обусловленная его внутренними шумами, которые тем выше, чем больше температура нагрева МШУ; ηф - коэффициент передачи фидерного тракта.

Коэффициент передачи фидерного тракта тем выше, чем меньше его длина. Поэтому МШУ как на земных станциях [2, с. 353], так и на ГКА-ретрансляторах [3, с. 94] стараются устанавливать как можно ближе к приемным антеннам.

Одним из примеров реализации данного принципа компоновки приемной системы спутника являются приемные системы спутников подвижной связи типа Thuraya с многолучевыми антеннами большого диаметра и облучающими решетками, построенными по типу активных фазированных антенных решеток, в которых каждый излучатель «привязан» к своему МШУ [4, с. 382-385].

Наиболее близким аналогом, выбранным за прототип заявляемого способа компоновки приемной системы, является способ, предложенный для реализации в космическом аппарате по патенту РФ на промышленный образец RU №83549. В соответствии с этим способом каждую крупногабаритную параболическую антенну устанавливают на штанге в раскрытом положении, часть блоков ретранслятора размещают в приборном отсеке, а часть, в том числе приемный блок ретранслятора и входящий в его состав МШУ - на штанге в непосредственной близости от установленной на ней антенны.

В частности, по описанному выше способу построен геостационарный ГКА «Луч-5А», крупногабаритные антенны которого предназначены для информационного обмена с низкоорбитальными объектами РКТ [1].

Недостатком вышеуказанных способов компоновки МШУ является то, что при реализации их на ГКА в силу функционирования последних в условиях переменной освещенности Солнцем аппаратуры, расположенной на внешних элементах ГКА, в том числе и на антенных штангах, в соответствии с формулой (1) вследствие характерной для условий космического пространства большой разницы температур окружающей среды To на освещенных и теневых участках конструкции ПСА наблюдается существенное изменение шумовой температуры приемной системы ПСА, а значит и параметра G/T. Так, например, при изменении температуры окружающей среды от минус 100°С (173 К) до плюс 100°С (373 К) и при ηф=0,63 (что соответствует потерям в фидерном тракте, равным 2 дБ) изменение шумовой температуры приемной системы составит 73 К. Таким образом, при ТА=290 К и ТМШУ=100 К снижение параметра G/T за счет вышеуказанного увеличения температуры окружающей среды фидерного тракта может составить около 0,8 дБ.

Другим недостатком является сложность обеспечения необходимого для посадочного места МШУ, устанавливаемого на антенной штанге, рабочего температурного режима, который должен поддерживаться в пределах примерно от минус 30°С до плюс 10°С. Важность его поддержания для МШУ можно проиллюстрировать следующим примером. У МШУ фирмы LNR Communications Inc. различных моделей исполнения и разных частотных диапазонов при изменении температуры окружающей среды от плюс 23°С до плюс 50°С приращение шумовой температуры составляет от 3 до 20 К. Т.е. повышение рабочей температуры МШУ приводит к дополнительному снижению параметра G/T.

Задачей предлагаемого изобретения является повышение параметра G/T приемной системы ретранслятора, получаемое за счет улучшения температурных условий эксплуатации элементов приемной системы - МШУ и фидерных трактов, устанавливаемых на антенных штангах.

Поставленная цель достигается компоновкой приемной системы ПСА таким образом, что устанавливают на антенной штанге два комплекта входящих в состав ретранслятора МШУ, работающих в одинаковых диапазонах частот, размещают указанные комплекты МШУ на установочных плитах, которые располагают на северной и южной сторонах антенной штанги, плоскости установочных плит ориентируют параллельно плоскости геостационарной орбиты, размеры установочных плит выбирают не менее размеров посадочных мест под указанными комплектами МШУ и обеспечивают теплоизоляцию боковой поверхности корпусов МШУ.

Сущность предлагаемого изобретения поясняется фиг. 1÷4, где:

- на фиг. 1 показано взаимное расположение Земли и Солнца в дни летнего и зимнего солнцестояния, а также в дни весеннего и осеннего равноденствия;

- на фиг. 2 приведен общий вид ГКА серии «Луч-5», предназначенного для связи с объектами РКТ;

- на фиг. 3 показана освещенность солнечными лучами блоков МШУ ГКА, расположенных на антенных штангах в дни солнцестояний и равноденствий;

- на фиг. 4 представлена упрощенная схема размещения блоков МШУ на антенной штанге в соответствии с предлагаемым изобретением.

На фиг. 1÷4 введены следующие обозначения:

1 - геостационарная орбита (ГСО);

2 - плоскость экватора и ГСО;

3 - ось вращения Земли;

4 - плоскость орбиты Земли;

5 - Земля;

6 - орбита Земли;

7 - Солнце;

8 - точка летнего солнцестояния;

9 - точка зимнего солнцестояния;

10 - точка весеннего равноденствия;

11 - точка осеннего равноденствия;

12 - внешние блоки ретранслятора;

13 - рефлектор крупногабаритной параболической антенны;

14 - антенная штанга;

15 - приборный отсек;

16 - блок МШУ на северной стороне антенной штанги;

17 - блок МШУ на южной стороне антенной штанги;

18 - солнечные лучи;

19 - установочная плита.

ГСО 1, используемая подавляющим большинством спутниковых систем связи, вещания и ретрансляции данных, лежит в плоскости земного экватора 2, т.е. в плоскости, перпендикулярной оси вращения Земли 3. В свою очередь, ось вращения Земли 3 имеет наклон к плоскости орбиты Земли 4 примерно на 66,5°. При движении Земли 5 по орбите 6 вокруг Солнца 7 ось вращения Земли 3 сохраняет свое положение, вследствие чего на Земле 5 наблюдаются дни летнего и зимнего солнцестояния при нахождении Земли 5 соответственно в точках летнего 8 и зимнего 9 солнцестояния, а также дни весеннего и осеннего равноденствия при нахождении Земли 5 соответственно в точках весеннего 10 и осеннего 11 равноденствия [2, с. 36-37] (фиг. 1).

В этом случае блоки МШУ и фидерные тракты, входящие в состав внешних блоков ретранслятора 12 и размещенные позади рефлектора крупногабаритной параболической антенны 13, например, на северной стороне антенной штанги 14 ГКА с фиксированным положением в пространстве (фиг. 2), при движении Земли 5 по орбите 6 вокруг Солнца 7, а вместе с ней и ГКА по ГСО 1 в период между точками весеннего 10 и осеннего 11 равноденствия будут подвержены прямому воздействию солнечных лучей. В то же время при движении Земли 5 и ГКА в период между точками осеннего 11 и весеннего 10 равноденствия эти же блоки МШУ и фидерные тракты будут затенены элементами конструкции антенной штанги 14.

Для блоков МШУ и фидерных трактов, размещенных на южной стороне антенной штанги 14, ситуация будет прямо противоположной.

Необходимо отметить, что для приборов ретранслятора, размещаемых в приборном отсеке 15 ГКА, заданный температурный режим поддерживается регулированием параметров теплообмена приборов ретранслятора с радиатором и радиатора с окружающим космическим пространством. Для приборов на антенных штангах 14 параметры теплообмена не регулируются, а заданный диапазон температур поддерживается за счет выбора на этапе проектирования оптических характеристик терморегулирующих покрытий, способов теплопередачи и типа теплоизоляции. И если благодаря активной системе терморегулирования спутника температурный режим приборов в приборном отсеке 15 легко поддерживается при любой ориентации ГКА, то обеспечение температурного режима приборов на антенных штангах 14 с помощью пассивной системы терморегулирования вызывает существенные проблемы - отвод тепла в период пребывания приборов и трактов на освещенной Солнцем стороне штанг 14 и подогрев в период пребывания на теневой стороне.

Как было отмечено выше, для фидерных трактов и МШУ наиболее благоприятным с точки зрения минимизации шумовой температуры приемной системы является режим работы при пониженной температуре, а это означает размещение МШУ и фидерного тракта связи с антенной на теневой стороне штанги 14. Для достижения требуемого температурного режима МШУ и фидерных трактов в основу предлагаемого способа положена установка двух комплектов МШУ, расположенных на противоположных сторонах антенной штанги 14, с подключением в данный момент к антенне того комплекта, который находится на теневой стороне штанги 14. При этом требуемый температурный режим поддерживается с помощью электрообогревателей и экранно-вакуумной теплоизоляции.

Исходя из условий освещенности при различных положениях ГКА на ГСО 1, указанные комплекты МШУ целесообразно разместить на северной и южной сторонах антенной штанги 14 и производить их переключение в момент изменения освещенности плоскости ГСО 2, которое наблюдается при переходе Земли 5 через точки весеннего 10 и осеннего 11 равноденствия.

Это наглядно иллюстрируется фиг. 3, на которой показаны три основных варианта освещенности солнечными лучами 18 рефлектора крупногабаритной параболической антенны 13 вместе с размещенными на штанге 14 блоками МШУ: блоками МШУ 16 на северной стороне антенной штанги 14 и блоками МШУ 17 на южной стороне штанги 14.

Первый вариант (верхний чертеж на фиг. 3) соответствует нахождению Земли 5 в точке летнего солнцестояния 8, когда в любой точке ГСО 1 (условно показаны только три положения на ГСО, представленной в виде ее плоскости, перпендикулярной плоскости чертежа) преимущественному тепловому воздействию солнечных лучей 18 подвергается блок МШУ 16, находящийся на северной стороне антенной штанги 14. В то же время блок МШУ 17 на южной стороне штанги 14 (заштриховано) в основном находится в тени штанги. Следует отметить, что даже при крайнем левом положении ГКА на ГСО 1 блок МШУ 16 освещается солнечными лучами через рефлектор 13, который для большинства крупногабаритных параболических антенн имеет сетчатую конструкцию.

Второй вариант (средний чертеж на фиг. 3) соответствует периоду весеннего или осеннего равноденствия, когда блоки МШУ 16 и 17 в одинаковой степени освещены солнечными лучами 18, при этом ГКА в крайнем левом положении на ГСО 1 находится в тени Земли 5.

Наконец, третий вариант (нижний чертеж на фиг. 3) соответствует нахождению Земли 5 в точке зимнего солнцестояния 9, когда в любой точке ГСО 1 преимущественному тепловому воздействию солнечных лучей 18 подвергается уже блок МШУ 17, находящийся на южной стороне антенной штанги 14. В то же время блок МШУ 16 на северной стороне штанги 14 (заштриховано) в основном находятся в ее тени.

Таким образом, для улучшения температурных условий эксплуатации элементов приемной системы (МШУ и фидерных трактов), устанавливаемых на антенной штанге и, в конечном счете, повышения параметра G/T приемной системы ретранслятора необходимо:

- реализовать входное устройство приемной системы ретранслятора, работающее в определенном частотном диапазоне, в виде двух комплектов МШУ - «северного» и «южного», каждый из которых работает при нахождении в тени штанги;

- обеспечить размещение установочных плит, на которых монтируются указанные комплекты МШУ, на северной и южной сторонах антенной штанги в плоскости, параллельной плоскости ГСО. Размеры установочных плит должны быть не менее размеров посадочных мест под комплектами МШУ;

- обеспечить теплоизоляцию боковой поверхности корпусов МШУ, которая в той или иной степени подвержена воздействию солнечного излучения даже у комплектов МШУ, находящихся в тени штанги. При этом открытая верхняя поверхность корпуса работающего комплекта МШУ служит в качестве радиатора, осуществляющего сброс избыточного тепла в окружающее пространство.

Поддержание требуемого пространственного положения установочных плит, а вместе с ними и антенной штанги - вполне реализуемая задача для спутника с трехосной системой ориентации.

Размещение комплектов МШУ показано на фиг. 4. На антенной штанге 14, к которой крепится рефлектор крупногабаритной параболической антенны 13, смонтированы также установочные плиты 19, к которым крепятся «северный» 16 и «южный» 17 комплекты МШУ.

Теплоизоляция боковых поверхностей корпусов МШУ (на фиг. 4 не показана) осуществляется с помощью широко используемой на космических аппаратах экранно-вакуумной теплоизоляции, представляющей собой конструкцию из нескольких слоев металлизированной алюминием пленки, разделенных между собой рифлением ее поверхности или установкой сетчатых прокладок [3, с. 354].

Использование предлагаемого способа обеспечивает повышение параметра G/T приемной системы ретранслятора, получаемое за счет улучшения температурных условий эксплуатации элементов приемной системы (МШУ и фидерных трактов), устанавливаемых на антенной штанге.

По результатам проведенного авторами анализа известной патентной и научно-технической литературы не обнаружена совокупность признаков, эквивалентных (или совпадающих) с признаками данного предлагаемого изобретения, поэтому заявители склонны считать техническое решение отвечающим критерию «новизна».

Предложенное авторами техническое решение в настоящее время реализовано в функционирующих ГКА для информационного обмена с объектами РКТ.

Литература

1. А.В. Кузовников, В.А. Мухин, Ю.Г. Выгонский, В.В. Головков, С.М. Роскин. Многофункциональная космическая система ретрансляции «Луч» - новая российская система для оперативного информационного обмена с низкоорбитальными космическими аппаратами // Наукоемкие технологии, №9, т. 15, 2014, с. 20-23.

2. Спутниковая связь и вещание: Справочник. - 3-е изд., перераб. и доп. / В.А. Бартенев, Г.В. Болотов, В.Л. Быков и др.; Под. ред. Л.Я. Кантора. - М.: Радио и связь, 1997. - 528 с.

3. Чеботарев В.Е., Косенко В.Е. Основы проектирования космических аппаратов информационного обеспечения: учеб. пособие / Сиб. гос. аэрокосмич. ун-т. - Красноярск, 2011. - 488 с.

4. Волков Л.Н., Немировский М.С., Шинаков Ю.С. Системы цифровой радиосвязи: базовые методы и характеристики: Учеб. пособие. - М.: Эко-Трендз, 2005. - 392 с.

Способ компоновки приемной системы геостационарного космического аппарата для связи с низкоорбитальными объектами ракетно-космической техники, при котором крупногабаритную параболическую антенну устанавливают на антенной штанге в раскрытом положении, а приемный блок ретранслятора размещают на указанной антенной штанге в непосредственной близости от установленной на ней антенны, отличающийся тем, что устанавливают на антенной штанге два комплекта входящих в состав ретранслятора малошумящих усилителей, работающих в одинаковых диапазонах частот, размещают указанные комплекты малошумящих усилителей на установочных плитах, которые располагают на северной и южной сторонах антенной штанги, при этом плоскости установочных плит выполняют параллельными плоскости геостационарной орбиты, размеры установочных плит выбирают не менее размеров посадочных мест под указанными комплектами малошумящих усилителей и обеспечивают теплоизоляцию боковой поверхности корпусов малошумящих усилителей.
СПОСОБ КОМПОНОВКИ ПРИЕМНОЙ СИСТЕМЫ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА ДЛЯ СВЯЗИ С НИЗКООРБИТАЛЬНЫМИ ОБЪЕКТАМИ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ
СПОСОБ КОМПОНОВКИ ПРИЕМНОЙ СИСТЕМЫ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА ДЛЯ СВЯЗИ С НИЗКООРБИТАЛЬНЫМИ ОБЪЕКТАМИ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ
СПОСОБ КОМПОНОВКИ ПРИЕМНОЙ СИСТЕМЫ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА ДЛЯ СВЯЗИ С НИЗКООРБИТАЛЬНЫМИ ОБЪЕКТАМИ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ
СПОСОБ КОМПОНОВКИ ПРИЕМНОЙ СИСТЕМЫ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА ДЛЯ СВЯЗИ С НИЗКООРБИТАЛЬНЫМИ ОБЪЕКТАМИ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ
СПОСОБ КОМПОНОВКИ ПРИЕМНОЙ СИСТЕМЫ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА ДЛЯ СВЯЗИ С НИЗКООРБИТАЛЬНЫМИ ОБЪЕКТАМИ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 200.
10.01.2016
№216.013.9f82

Способ запуска стационарного плазменного двигателя

Изобретение относится к энергетике. Способ запуска стационарного плазменного двигателя, при котором подачу напряжения разряда на катод и анод двигателя выполняют не до подачи поджигных импульсов, а после завершения нагрева катода, открытия клапанов двигателя и подачи поджигных импульсов. При...
Тип: Изобретение
Номер охранного документа: 0002572471
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a21a

Способ проведения анализа долговечности радиоэлектронной аппаратуры

Изобретение относится к области информационных технологий и может быть использовано при конструировании на компьютере сложных электротехнических изделий. Технический результат заключается в сокращении временных и вычислительных ресурсов, затрачиваемых на конструирование таких изделий, а также в...
Тип: Изобретение
Номер охранного документа: 0002573140
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.bfd2

Способ управления автономной системой электроснабжения космического аппарата

Изобретение относится к электротехнике, а именно к системам электроснабжения космических аппаратов с использованием в качестве первичных источников энергии солнечных батарей, а в качестве накопителей энергии - аккумуляторных батарей. Технический результат - повышение надежности эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002576795
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c23d

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к бортовому оборудованию, преимущественно телекоммуникационных спутников. Способ включает изготовление коллекторов (К) и соединительных трубопроводов (СТ) из трубы специального профиля (с двумя полками). Жидкостные тракты К и СТ промывают органическим теплоносителем, затем...
Тип: Изобретение
Номер охранного документа: 0002574104
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c249

Способ электропитания космического аппарата

Изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА). Технический результат - увеличение надежности. Система содержит солнечную батарею, подключенную своими плюсовой и минусовой шинами к стабилизатору напряжения,...
Тип: Изобретение
Номер охранного документа: 0002574912
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c24b

Солнечная батарея на гибкой подложке и способ ее раскрытия

Группа изобретений относится к развертываемым солнечным батареям (СБ) космического аппарата. СБ снабжена штангой в виде шарнирно соединенных корневого (1) и телескопического (2) звеньев и выполнена в форме складываемых гармошкой створок (17). В транспортном положении звенья (1, 2) сложены...
Тип: Изобретение
Номер охранного документа: 0002574057
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c2bb

Способ электропитания космического аппарата

Заявленное изобретение относится к способам питания космического аппарата. Для электропитания космического аппарата обеспечивают совместную работу солнечной батареи и литий-ионной аккумуляторной батареи на бортовую нагрузку, заряжают аккумуляторную батарею от солнечной батареи, измеряют и...
Тип: Изобретение
Номер охранного документа: 0002574475
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c419

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР). Каждый контур содержит сообщенные подконтуры модулей...
Тип: Изобретение
Номер охранного документа: 0002574499
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c538

Способ компоновки полезной нагрузки и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при компоновке полезной нагрузки (ПН) в космических аппаратах (КА). Устройство компоновки ПН содержит КА и выполнено в виде разделяемой силовой трубы изогридной сетчатой структуры с функцией силовой конструкции корпуса КА, и...
Тип: Изобретение
Номер охранного документа: 0002574103
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca66

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой...
Тип: Изобретение
Номер охранного документа: 0002577925
Дата охранного документа: 20.03.2016
Показаны записи 41-50 из 106.
10.01.2016
№216.013.9f82

Способ запуска стационарного плазменного двигателя

Изобретение относится к энергетике. Способ запуска стационарного плазменного двигателя, при котором подачу напряжения разряда на катод и анод двигателя выполняют не до подачи поджигных импульсов, а после завершения нагрева катода, открытия клапанов двигателя и подачи поджигных импульсов. При...
Тип: Изобретение
Номер охранного документа: 0002572471
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a21a

Способ проведения анализа долговечности радиоэлектронной аппаратуры

Изобретение относится к области информационных технологий и может быть использовано при конструировании на компьютере сложных электротехнических изделий. Технический результат заключается в сокращении временных и вычислительных ресурсов, затрачиваемых на конструирование таких изделий, а также в...
Тип: Изобретение
Номер охранного документа: 0002573140
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.bfd2

Способ управления автономной системой электроснабжения космического аппарата

Изобретение относится к электротехнике, а именно к системам электроснабжения космических аппаратов с использованием в качестве первичных источников энергии солнечных батарей, а в качестве накопителей энергии - аккумуляторных батарей. Технический результат - повышение надежности эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002576795
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c23d

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к бортовому оборудованию, преимущественно телекоммуникационных спутников. Способ включает изготовление коллекторов (К) и соединительных трубопроводов (СТ) из трубы специального профиля (с двумя полками). Жидкостные тракты К и СТ промывают органическим теплоносителем, затем...
Тип: Изобретение
Номер охранного документа: 0002574104
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c249

Способ электропитания космического аппарата

Изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА). Технический результат - увеличение надежности. Система содержит солнечную батарею, подключенную своими плюсовой и минусовой шинами к стабилизатору напряжения,...
Тип: Изобретение
Номер охранного документа: 0002574912
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c24b

Солнечная батарея на гибкой подложке и способ ее раскрытия

Группа изобретений относится к развертываемым солнечным батареям (СБ) космического аппарата. СБ снабжена штангой в виде шарнирно соединенных корневого (1) и телескопического (2) звеньев и выполнена в форме складываемых гармошкой створок (17). В транспортном положении звенья (1, 2) сложены...
Тип: Изобретение
Номер охранного документа: 0002574057
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c2bb

Способ электропитания космического аппарата

Заявленное изобретение относится к способам питания космического аппарата. Для электропитания космического аппарата обеспечивают совместную работу солнечной батареи и литий-ионной аккумуляторной батареи на бортовую нагрузку, заряжают аккумуляторную батарею от солнечной батареи, измеряют и...
Тип: Изобретение
Номер охранного документа: 0002574475
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c419

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР). Каждый контур содержит сообщенные подконтуры модулей...
Тип: Изобретение
Номер охранного документа: 0002574499
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c538

Способ компоновки полезной нагрузки и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при компоновке полезной нагрузки (ПН) в космических аппаратах (КА). Устройство компоновки ПН содержит КА и выполнено в виде разделяемой силовой трубы изогридной сетчатой структуры с функцией силовой конструкции корпуса КА, и...
Тип: Изобретение
Номер охранного документа: 0002574103
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca66

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой...
Тип: Изобретение
Номер охранного документа: 0002577925
Дата охранного документа: 20.03.2016
+ добавить свой РИД