×
26.08.2017
217.015.d504

Результат интеллектуальной деятельности: Автономный солнечный опреснитель-электрогенератор

Вид РИД

Изобретение

№ охранного документа
0002622441
Дата охранного документа
15.06.2017
Аннотация: Изобретение относится к технике опреснения морских и соленых (минерализованных) вод и может быть использовано для получения опресненной воды и попутной генерации электрической энергии. Автономный солнечный опреснитель–электрогенератор включает прямоугольный корпус, выполненный из материала с высокой теплопроводностью. Крыша 2 корпуса покрыта фотоэлементами с накопительным блоком 4. Внутри корпуса размещен наклонный испарительный лоток 5, делящий полость корпуса на испарительную 7 и конденсационную 8 камеры, сообщающиеся между собой у бортов корпуса через вертикальные щели. В торцах корпуса и лотка 5 расположены впускной коллектор, соединенный с погружным питательным насосом 12, выпускная горизонтальная щель. Днище корпуса соединено с емкостью для сбора конденсата 15, в которой помещен конденсатный насос 16. Конденсационная камера 8 погружена в водоем 13. Уклон лотка 5 направлен в сторону выпуска питательной воды. Внутренние поверхности торцов, бортов и днища конденсационной камеры 8 выполнены с вертикальными и горизонтальными гофрами. В пазы горизонтальных гофр вставлены термоэлектрические преобразователи, в массиве которых помещены термоэмиссионные элементы, представляющие собой парные проволочные отрезки 21 и 22, выполненные из разных металлов и спаянные на концах между собой под углом 90° с образованием П–образных рядов. Крайние проволочные отрезки каждой пары П–образных рядов соединены между собой перемычками. На противоположном конце каждая пара П-образных рядов соединена между собой последовательно через электрические конденсаторы. Первый и последний из конденсаторов и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами. Изобретение позволяет повысить эффективность автономного солнечного опреснителя-электрогенератора. 10 ил.

Изобретение относится к технике опреснения морских и соленых (минерализованных) вод и может быть использовано для получения опресненной воды и попутной генерации электрической энергии.

Известен гелиодистиллятор, содержащий корпус с прозрачным покрытием, дефлектор, установленную в корпусе испарительную тарелку с бортиками (испаритель), снабженную питательным патрубком (распределителем) и покрытую снизу слоем гидротеплоизоляции, конденсатор (конденсационная камера), размещенный в нижней части корпуса под тарелкой, погруженный в воду бассейна [АС СССР №1554290, МПК C02F 1/14, 1993].

Недостатками известного гелиодистиллятора являются невозможность использования его конструкции для масштабного получения опресненной воды, необходимость периодической очистки поверхности тарелки от солевых отложений и рассола, для чего процесс дистилляции необходимо часто прерывать, необходимость наличия постороннего энергетического источника для насоса откачки полученного дистиллята, что снижает его эффективность.

Более близким к предлагаемому изобретению является автономный солнечный опреснитель, включающий прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами, соединенными с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на испарительную и конденсационную камеры, сообщающихся между собой у бортов корпуса через вертикальные щели, внутренняя поверхность конденсационной камеры покрыта решеткой из полос пористого материала, в верхнем торце лотка у правого торца корпуса расположен впускной коллектор, представляющий собой, заглушенную на торцах, горизонтальную перфорированную трубу, соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, при этом большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, питательный и конденсатный насосы снабжаются электроэнергией из накопительного блока фотоэлементов, а уклон лотка направлен в сторону выпуска питательной воды с уклоном равным углу естественного откоса воды [Патент РФ №2567895, МПК C02F 1/14, 2015].

Основным недостатком известного автономного солнечного опреснителя является недостаточное использование низкопотенциальной энергии воды для генерации электрической энергии, что снижает его эффективность.

Технической задачей предлагаемого изобретения является повышение эффективности автономного солнечного опреснителя-электрогенератора.

Техническая задача реализуется автономным солнечным опреснителем-электрогенератором, включающим прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на верхнюю испарительную камеру и нижнюю конденсационную камеру, сообщающихся между собой у бортов корпуса через вертикальные щели, в верхнем торце наклонного испарительного лотка у правого торца корпуса расположен впускной коллектор, представляющий собой, заглушенную на торцах, горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец наклонного испарительного лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, уклон наклонного испарительного лотка направлен в сторону выпуска питательной воды с уклоном равным углу естественного откоса воды, причем внутренняя поверхность торцов, бортов и днища нижней конденсационной камеры выполнена с вертикальными и горизонтальными гофрами, внутри каждого гофра размещены вертикальные и горизонтальные пазы, в каждый из которых вставлен вертикальный или горизонтальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов M1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П-образные ряды, крайние проволочные отрезки каждой пары П-образных рядов термоэлектрических преобразователей, соединены между собой перемычками, на противоположном конце каждая пара П-образных рядов, соединены между собой последовательно через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами.

Предлагаемый автономный солнечный опреснитель-электрогенератор (АСО-ЭГ) изображен на фиг. 1-6 (на фиг. 1 показан общий вид, на фиг. 2-6 основные узлы и их разрезы).

АСО-ЭГ содержит прямоугольный корпус 1, выполненный из материала с высокой теплопроводностью, крыша 2, покрытая сверху фотоэлементами 3 с накопительным блоком 4, внутри корпуса 1 размещен наклонный испарительный лоток с бортиками 5, днище которого снизу покрыто слоем гидротеплоизоляции 6, делящий полость корпуса 1 на верхнюю испарительную камеру 7 и нижнюю конденсационную камеру 8, сообщающихся между собой у бортов корпуса 1 через вертикальные щели 9, в верхнем торце наклонного испарительного лотка 5 у правого торца корпуса 1 расположен впускной коллектор 10, представляющий собой, заглушенную на торцах, горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом 11 с погружным питательным насосом 12, помещенным в водоеме с морской (минерализованной, соленой) водой 13, нижний торец наклонного испарительного лотка 5 соединен с выпускной горизонтальной щелью 14, устроенной в левом торце корпуса 1, днище корпуса 1 в центре соединено с емкостью для сбора конденсата 15, в которой помещен конденсатный насос 16, при этом большая часть корпуса 1, в которой расположена конденсационная камера 8, погружена в водоем 13, а уклон наклонного испарительного лотка 5 направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды, внутренняя поверхность торцов, бортов и днища нижней конденсационной камеры 8 корпуса 1 выполнены с вертикальными и горизонтальными гофрами 17, внутри каждого гофра 17 размещены вертикальные и горизонтальные пазы 18, в каждый из которых вставлен вертикальный или горизонтальный термоэлектрический преобразователь (ТЭП) 19, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов (ТЭЭ) 20, представляющих собой парные проволочные отрезки 21 и 22, выполненные из разных металлов, спаянные на концах между собой таким образом, что их спаи 23 согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя (ТЭП) 19 параллельно ей, не касаясь ее, а сами проволочные отрезки 21 и 22 расположены параллельно друг другу, образуя П-образные ряды 24, крайние проволочные отрезки 21 и 22 каждой пары П-образных рядов 24 ТЭП 19, соединены между собой перемычками 25, на противоположном конце каждая пара П-образных рядов 24, соединены между собой последовательно через электрические конденсаторы 26, первый и последний из которых и фотоэлементы 3 соединены с выходными коллекторами 27 и 28, накопительным блоком 4, насосами 12 и 16 и другими потребителями (соединительные электропровода и другие потребители на фиг. 1-10 не показаны).

В основу работы предлагаемого АСО-ЭГ положено свойство фотоэлементов 3 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [АС СССР №1603152, МПК F24J 2/32, 1990]. Кроме того, изготовление контурной арматуры ТЭП 19 в виде П-образных рядов 24, состоящих из парных проволочных отрезков 21 и 22, выполненных из разных металлов, спаянных на концах между собой, то при нагреве внутренних спаев 23 проволочных отрезков 21 и 22 ТЭЭ 20 ТЭП 19 конденсирующимся паром и охлаждении противоположных им спаев 23 снаружи, обращенных к холодной воде, на них устанавливаются разные температуры, в результате чего в П-образных рядах 24 появляется термоэлектричество [С.Г. Калашников. Электричество. - М: «Наука», 1970, с. 502-506]. Компоновка АСО-ЭГ (сверху - фотоэлемент 3, снизу - крышка 2) позволяет одновременно производить съем тепла с фотоэлементов 4, увеличивая эффективность их работы, за счет испарения морской воды, текущей по наклонному испарительному лотку 5, пар которой нагревает при своей конденсации спаи 23 ТЭЭ 21, генерируя термоэлектричество. При этом П-образное расположение ТЭЭ 20 в рядах 24 ТЭП 19 позволяет значительно увеличить их удельное количество, приходящееся на единицу поверхности конденсационной камеры 8, и одновременно увеличить площадь теплообмена, увеличивая скорость конденсации пара, а параллельное расположение спаев 23 относительно наружной поверхности ТЭП 19 увеличивает площадь контакта спаев 23 с охлаждаемой (нагреваемой) поверхностями, что интенсифицирует процесс теплообмена между противоположными спаями 23. Кроме того, соединение ТЭП 19 вертикальных и горизонтальных рядов 24 между собой последовательно через электрические конденсаторы 26 и с выходными коллекторами 27, 28 снижает электрическое сопротивление цепи ТЭП при генерировании термоэлектричества.

АСО-ЭГ работает следующим образом. Корпус 1 погружается в водоем с морской (минерализованной, соленой) водой 13 таким образом, чтобы большая часть конденсационной камеры 8 корпуса 1 была погружена в водоем 13, выпускная горизонтальная щель 14 находилась над уровнем воды в водоеме 13, а крышка 2 была горизонтальной (для обеспечения равномерного приема солнечных лучей в течение светового дня). Такое положение корпуса 1 обеспечивается или соотношением между его весом и центром тяжести, или установкой его на якоря. Далее к впускному коллектору 10 через трубопровод 11 присоединяют погружной питательный насос 12, глубину погружения которого Н выбирают из условий отсутствия в воде механических загрязнений и включают его в работу. При падении солнечных лучей на поверхность фотоэлементов 3 в них осуществляется преобразование воспринятой солнечной энергии в электрическую и тепловую энергии. Устойчивая и эффективная работы фотоэлементов 3 обеспечивается непрерывным отводом тепла от них, который осуществляется тем, что полученная в фотоэлементах 3 в результате трансформации солнечной энергии тепловая энергия непрерывно отводится через стенку крыши 2, выполненную из материала с высокой теплопроводностью, в испарительную камеру 7. В испарительной камере 7 поступившее тепло расходуется на нагрев минерализованной питательной воды, движущейся по наклонному испарительному лотку 5 в сторону его нижнего торца самотеком за счет его уклона. Последняя подается в наклонный испарительный лоток 5 питательным насосом 12 через впускной коллектор 10, представляющим собой, заглушенную на торцах, горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной нагреваемой воды, что обеспечивает ее равномерное распределение по ширине полотна наклонного испарительного лотка 5. В процессе нагрева минерализованной воды, которая нагревается до температуры большей, чем температура воды в водоеме 13, часть ее испаряется, а неиспарившаяся часть самотеком перемещается по полотну до нижнего торца наклонного испарительного лотка 5 и через горизонтальную выпускную щель 14 сливается в водоем 13. Полученный в процессе нагрева питательной воды насыщенный водяной пар, через вертикальные щели 9 поступает в нижнюю конденсационную камеру 8 и конденсируется там, в результате чего при выходе на стационарный режим работы опреснителя, давление в конденсационной камере 8 всегда меньше, чем в испарительной камере 7. Конденсация водяного пара, полученного в испарительной камере 7, в конденсационной камере 8 осуществляется в результате процесса теплопередачи от пара через стенки поверхность торцов, бортов и днища нижней конденсационной камеры 8, выполненные с вертикальными и горизонтальными гофрами 17, внутри которых размещены вертикальные и горизонтальные пазы 18, в которые вставлены ТЭП 19, с массивом более холодной воды в водоеме 13, причем полученный насыщенный пар с температурой tП контактирует при этом с внутренней поверхностью ТЭП 19, нагревая внутренние спаи 23 проволочных отрезков 21 и 22 ТЭЭ 20 ТЭП 19 до температуры t1. Одновременно, поверхность ТЭП 19, обращенная к воде, охлаждается в результате контакта гофра 17 с водой. При этом тепло, выделяющееся в результате работы фотоэлементов 4 от солнечных лучей, в конечном итоге, тратится на нагрев внутренних спаев 23 ТЭЭ 20, а холод, поступающий от воды, охлаждает наружные спаи 23 этих же ТЭЭ 20 до температуры t2, в результате чего на противоположных спаях 23 возникает разность температур (t1-t2), а в П-образных рядах 24 появляется термоэлектричество, которое суммируется в конденсаторах 26. Полученное под воздействием солнечных лучей электрическая энергия из фотоэлементов 4 и термоэлектричество из ТЭП 19 через коллекторы 27 и 28, поступает в накопительный блок, где осуществляется трансформация напряжения, силы тока и накопление электрической энергии, часть которой расходуется на привод насосов 12 и 16, а другая часть направляется другим потребителям (другие потребители на фиг. 1-10 не показаны).

Полученный конденсат самотеком за счет сил тяжести движется со всех сторон конденсационной камеры 8 по каналам, образованным рядами ТЭП 19, и стекает в емкость для сбора конденсата 15, расположенную в центре днища камеры 8, стекает туда за счет силы тяжести, накапливается там и насосом 16 подается потребителю.

Высота бортиков Δ1 наклонного испарительного лотка 5, ширина вертикальных щелей 9 Δ2 выбираются из условия недопущения перелива питательной воды и свободного прохода пара при максимальной нагрузке опреснителя. Ширина горизонтальной выпускной щели Δ3 должна обеспечивать свободный слив нагретой питательной воды в водоем 13, но в тоже время ее сопротивление по воздуху должно быть значительно больше, чем сопротивление вертикальных щелей по водяному пару, что проверяется аэродинамическим и гидравлическим расчетами. Длина наклонного испарительного лотка 5 выбирается из условия минимального отложения солей на его поверхности, ширина принимается исходя из условий обеспечения равномерного распределения питательной воды на поверхности по его ширине и длине. Производительность предлагаемого солнечного опреснителя можно увеличить путем размещения параллельно нескольких наклонных испарительных лотков 5 в одном корпусе 1.

Количество фотоэлементов 3, размеры корпуса 1 и крышки 2, глубина погружения конденсационной камеры 8 в воду, размеры и шаг между гофрами 17, их длину определяют в зависимости от наружных условий места установки (температуры наружного воздуха, температуры воды, солнечного освещения) и требуемой мощности. Величина разности электрического потенциала на коллекторах 21 и 22, сила электрического тока зависит от характеристик фотоэлементов 3, продолжительности и интенсивности солнечного облучения, характеристик пар металлов из которых изготовлены проволочные отрезки 21 и 22, числа ТЭЭ 20 и ТЭП 19 в П-образных рядах 24 и их числа в камере 8, а также разности температур на противоположных спаях 23 ТЭЭ 20. Полученный электрический ток, помимо обеспечения работы насосов 12 и 16, можно использовать для обслуживания различных технических устройств, а также обогрева и освещения жилых и производственных помещений на берегу водоема, таким образом, конструкция предлагаемого АСО-ЭГ позволяет одновременно проводить масштабный процесс опреснения морской или минерализованной (соленой) воды непосредственно в самом водоеме, транспортировку ее потребителю и генерировать электричество за счет использования солнечной энергии и низкопотенциальной энергии минерализованной (морской) воды, что повышает его эффективность.

Автономный солнечный опреснитель-электрогенератор, включающий прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на верхнюю испарительную камеру и нижнюю конденсационную камеру, сообщающиеся между собой у бортов корпуса через вертикальные щели, в верхнем торце наклонного испарительного лотка у правого торца корпуса расположен впускной коллектор, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец наклонного испарительного лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, уклон лотка направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды, отличающийся тем, что внутренняя поверхность торцов, бортов и днища нижней конденсационной камеры выполнена с вертикальными и горизонтальными гофрами, внутри каждого гофра размещены вертикальные и горизонтальные пазы, в каждый из которых вставлен вертикальный или горизонтальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П-образные ряды, крайние проволочные отрезки каждой пары П-образных рядов термоэлектрических преобразователей соединена между собой перемычками, на противоположном конце каждая пара П-образных рядов соединены между собой последовательно через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами.
Автономный солнечный опреснитель-электрогенератор
Автономный солнечный опреснитель-электрогенератор
Автономный солнечный опреснитель-электрогенератор
Автономный солнечный опреснитель-электрогенератор
Источник поступления информации: Роспатент

Показаны записи 281-290 из 380.
02.10.2019
№219.017.d13c

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Технической задачей предлагаемого изобретения является обеспечение эффективной эксплуатации газораспределительной станции при поддержании нормированных параметров по...
Тип: Изобретение
Номер охранного документа: 0002700842
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d154

Способ утилизации полимерных компонентов коммунальных и промышленных отходов и устройство для его осуществления

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций. Техническим результатом является повышение надежности и эффективности...
Тип: Изобретение
Номер охранного документа: 0002700862
Дата охранного документа: 23.09.2019
03.10.2019
№219.017.d1c6

Устройство для акустического контроля за состоянием пчелиной семьи

Изобретение относится к области пчеловодства и может найти применение при практической работе на индивидуальных и коллективных пасеках. Устройство для акустического контроля за состоянием пчелиной семьи содержит внешний съёмный конденсаторный микрофон с электропитанием, источник питания,...
Тип: Изобретение
Номер охранного документа: 0002701812
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1cd

Трубчатые наноструктуры оксида меди (ii) и электрохимический способ их получения

Использование: для производства наноструктурированных порошков трубчатых наночастиц оксида меди (II), применяемых в качестве катализаторов горения углеродных топливных (энергонасыщенных) составов. Сущность изобретения заключается в том, что трубчатые наноструктуры оксида меди (II) имеют форму и...
Тип: Изобретение
Номер охранного документа: 0002701786
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d271

Слоевой пластинчатый термоэлектрогенератор

Изобретение относится к области теплоэнергетики. Изобретение представляет собой слоевой пластинчатый термоэлектрогенератор, содержащий термоэлектрическую секцию, состоящую из термоэлектрических преобразователей, выполненных из соединенных между собой у кромок пластин металлов М1 и М2, крайние...
Тип: Изобретение
Номер охранного документа: 0002701883
Дата охранного документа: 02.10.2019
05.10.2019
№219.017.d298

Санитарная приставка для теплогенераторов систем автономного теплоснабжения

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов теплогенераторов крышных котельных и систем квартирного отопления от вредных примесей. Технический результат: повышение надежности и эффективности санитарной приставки. Санитарная приставка для...
Тип: Изобретение
Номер охранного документа: 0002702043
Дата охранного документа: 03.10.2019
05.10.2019
№219.017.d2a3

Триггерный синхронный r-s триггер на полевых транзисторах

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Оно, в частности, может быть применено в блоках вычислительной техники, выполненных с использованием R-S триггеров. Технический результат: повышение нагрузочной способности триггерного синхронного R-S триггера...
Тип: Изобретение
Номер охранного документа: 0002702051
Дата охранного документа: 03.10.2019
10.10.2019
№219.017.d41a

Многофильерный питатель для изготовления непрерывного волокна из расплава горных пород

Изобретение относится к многофильерным питателям. Техническим результатом является устранение статического электричества. Многофильерный питатель для изготовления непрерывного волокна из расплава горных пород включает корпус, соединенную с ним фильерную пластину и токоподводы, размещенные по...
Тип: Изобретение
Номер охранного документа: 0002702439
Дата охранного документа: 08.10.2019
15.10.2019
№219.017.d5b9

Свеклонасос

Изобретение относится к насосостроению и может быть использовано в сахарной промышленности. Свеклонасос содержит корпус с всасывающим и нагнетающим патрубками и установленное на валу рабочее колесо. Поверхности корпуса и колеса имеют покрытия из эластичного материала. Изогнутая лопасть колеса...
Тип: Изобретение
Номер охранного документа: 0002702772
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d6da

Способ использования исходной воды при охлаждении хладоагента гту и пластинчатый теплообменник для его осуществления

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для нагрева и охлаждения газов и жидкостей в различных отраслях народного хозяйства, а именно, для интенсификации процесса теплопередачи и снижения скорости образования накипи в теплообменниках ГТУ. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703117
Дата охранного документа: 15.10.2019
Показаны записи 221-228 из 228.
23.04.2023
№223.018.5229

Индивидуальный счетчик жидкого топлива

Изобретение относится к приборостроению, в частности к технике измерения расхода топлива в двигателях внутреннего сгорания, и может быть использовано для контроля при заправке жидким топливом. Индивидуальный счетчик жидкого топлива содержит сборный цилиндрический корпус, состоящий из входного...
Тип: Изобретение
Номер охранного документа: 0002745872
Дата охранного документа: 02.04.2021
14.05.2023
№223.018.54bb

Комплексный теплообменник из многослойных пластин

Изобретение относится к теплоэнергетике и может быть использовано для комплексной утилизации тепла сбросных газов и жидкостей. В комплексном теплообменнике из многослойных пластин, содержащем корпус с газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из многослойных...
Тип: Изобретение
Номер охранного документа: 0002737574
Дата охранного документа: 01.12.2020
14.05.2023
№223.018.55f8

Экологичное вентилируемое ограждение здания

Изобретение относится к строительству и может быть использовано при изготовлении вентилируемых стеновых ограждений, позволяющих снизить тепловые поступления от наружного воздуха и одновременно очищать уличный воздух от вредных примесей в регионах жаркого и влажного климата. Технический...
Тип: Изобретение
Номер охранного документа: 0002730067
Дата охранного документа: 17.08.2020
15.05.2023
№223.018.5cc2

Санитарная насадка для дымовой трубы

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов печей, сжигающих биологические материалы, от вредных примесей и одорантов. Технический результат достигается тем, что предлагаемая санитарная насадка для дымовой трубы содержит корпус, выполненный из...
Тип: Изобретение
Номер охранного документа: 0002759629
Дата охранного документа: 16.11.2021
16.05.2023
№223.018.61f2

Способ и устройство для генерации перегретого пара

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано на теплоэлектростанциях при эксплуатации теплофикационных турбин для утилизации вторичного пара после турбины. Техническим результатом предлагаемого изобретения является повышение экологической и экономической...
Тип: Изобретение
Номер охранного документа: 0002748713
Дата охранного документа: 31.05.2021
20.05.2023
№223.018.65a7

Теплица с полной утилизацией сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству, в частности к теплице с полной утилизацией сбросных газов, содержащей зону обработки, соединенную с транзитным газоходом и состоящую из соединенных последовательно через отводной газоход, вентилятора, камеры окисления,...
Тип: Изобретение
Номер охранного документа: 0002748056
Дата охранного документа: 19.05.2021
21.05.2023
№223.018.68f3

Универсальная термоэлектрическая приставка

Изобретение относится к теплоэнергетике. Технический результат - повышение надежности и эффективности универсальной термоэлектрической приставки. Для этого предложена универсальная термоэлектрическая приставка, включающая вертикальный отбортованный с боковых сторон контактный лист, выполненный...
Тип: Изобретение
Номер охранного документа: 0002794747
Дата охранного документа: 24.04.2023
05.06.2023
№223.018.774c

Циклонный адсорбер для очистки природного газа

Изобретение относится к технике очистки газов и может быть использовано для очистки природных газов от вредных примесей, а именно газообразных соединений серы (сероводорода и пр.). Циклонный адсорбер для очистки природного газа содержит цилиндрический корпус, внутри которого соосно помещена...
Тип: Изобретение
Номер охранного документа: 0002762736
Дата охранного документа: 22.12.2021
+ добавить свой РИД