×
26.08.2017
217.015.d457

Результат интеллектуальной деятельности: Вихревой теплообменный элемент

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок. Изобретение заключается в том, что в вихревом теплообменном элементе, содержащем пакеты ребер, расстояние между ребрами в каждом пакете уменьшается, при этом на вертикальной поверхности каждого ребра пакета, расположенного на цилиндрической трубе большего диаметра, выполнены винтообразные канавки, причем направление касательной винтообразной канавки на вертикальной поверхности одного ребра имеет направление по ходу движения часовой стрелки, а направление касательной винтообразной канавки на противоположной вертикальной поверхности рядом расположенного ребра имеет направление против хода движения часовой стрелки. Технический результат - обеспечение постоянства теплоотдающей способности пакета ребер при длительной эксплуатации. 5 ил.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок реакторостроения.

Известен вихревой теплообменный элемент (см. патент РФ №2376541, МПК F28D 7/10, опубл. 28.12.2009), содержащий соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими поверхностями. При этом труба большего диаметра разделена на участки, внутри каждой из труб установлены, по меньшей мере, два завихрителя одинакового или разного типов, причем один завихритель – на входе в участок, а второй – на расстоянии между ними, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, кроме того, входы теплоносителей в каждый из участков трубы большего диаметра и внутренней трубы выполнены или с одной и той же стороны, или с противоположных сторон по отношению к движению потока, обеспечивая как противоточную, так и прямоточную схему движения теплоносителей в элементе, при этом внутренняя труба с цилиндрическими поверхностями выполнена из биметалла. Причем материал поверхности внутренней трубы со стороны горячего теплоносителя имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал поверхности внутренней трубы со стороны холодного теплоносителя.

Недостатком является невозможность эффективного использования нагреваемой при вихревом теплообмене между «горячим» и «холодным» теплоносителями поверхности цилиндрической трубы большего диаметра как источника теплоты для подогрева окружающей среды, например, в системе отопления жилого или промышленного помещения.

Известен вихревой теплообменный элемент (см. патент РФ №2456522, МПК F28D 7/10, опубл. 20.07.2012), содержащий соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими поверхностями, при этом труба большего диаметра разделена на участки, внутри каждой из труб установлены, по крайней мере, два завихрителя одинакового или разного типов, причем один завихритель – на входе в участок, а второй – на расстоянии между ними, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, кроме того, входы теплоносителей в каждый из участков трубы большего диаметра и внутренней трубы выполнены или с одной и той же стороны, или с противоположных сторон по отношению к движению потока, обеспечивая как противоточную, так и прямоточную схему движения теплоносителей в элементе, при этом внутренняя труба с цилиндрическими поверхностями выполнена из биметалла, причем материал поверхности внутренней трубы со стороны горячего теплоносителя имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал поверхности внутренней трубы со стороны холодного теплоносителя, причем на цилиндрической трубе большего диаметра по внешней поверхности на каждом участке, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, выполнены пакеты ребер, причем расстояние между ребрами в каждом пакете уменьшается.

Недостатком является снижение теплоотдающей способности пакета ребер при длительной эксплуатации вихревого теплообменного элемента, особенно в процессе использования для подогрева воды системы отопления жилого или промышленного помещения.

Технической задачей предлагаемого изобретения является поддержание при длительной эксплуатации нормированных значений теплоотдачи от вертикальных поверхностей ребер пакета, расположенного на цилиндрической трубе большего диаметра вихревого теплообменного элемента, за счет турбулизации потока подогреваемой воды в межреберном пространстве путем образования микрозавихрений при выполнении на вертикальных поверхностях ребер винтообразных канавок.

Технический результат, обеспечивающий постоянство теплоотдающей способности пакета ребер при длительной эксплуатации, достигается тем, что вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими поверхностями, при этом труба большего диаметра разделена на участки, внутри каждой из труб установлены, по крайней мере, два завихрителя одинакового или разного типов, причем один завихритель – на входе в участок, а второй – на расстоянии между ними, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, кроме того, вход теплоносителей в каждый из участков трубы большего диаметра и внутренней трубы выполнены или с одной и той же стороны, или с противоположных сторон по отношению к движению потока, обеспечивая как противоточную, так и прямоточную схему движения теплоносителей в элементе, при этом внутренняя труба с цилиндрическими поверхностями выполнена из биметалла, причем материал поверхности внутренней трубы со стороны горячего теплоносителя имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал поверхности внутренней трубы со стороны холодного теплоносителя, при этом на цилиндрической трубе большего диаметра по внешней поверхности на каждом участке, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, выполнены пакеты ребер, причем расстояние между ребрами в каждом пакете уменьшается, при этом на вертикальной поверхности каждого ребра пакета, расположенного на цилиндрической трубе большего диаметра, выполнены винтообразные канавки, причем направление касательной винтообразной канавки на вертикальной поверхности одного ребра имеет направление по ходу движения часовой стрелки, а направление касательной винтообразной канавки на противоположной вертикальной поверхности рядом расположенного ребра имеет направление против хода движения часовой стрелки.

На фиг.1 представлена принципиальная схема вихревого теплообменного элемента; на фиг.2 – характерное распределение тепловых удельных потоков от периферийных «горячих» слоев холодного и горячего теплоносителей, передаваемых теплопроводностью по толщине внутренней трубы из одноименного материала; на фиг.3 – то же самое, что и на фиг.2, только по толщине внутренней трубы из биметалла; на фиг.4 – вертикальные поверхности рядом расположенных ребер пакета с выполненными винтообразными канавками, касательные которых имеют противоположное направление; на фиг.5 – схемы движения микрозавихрений подогреваемой воды между вертикальными поверхностями ребер пакета, расположенного на цилиндрической трубе большего диаметра.

Вихревой теплообменный элемент содержит соосно расположенные с зазором одна в другой теплообменные трубы 1 и 2. В трубе 2 большего диаметра на входном участке 4 установлен завихритель 3 для обеспечения вращения наиболее тяжелых частиц среды периферийной зоны 5 потока холодного теплоносителя (ХТ), расположенной как на внутренней поверхности 6 трубы 2 большего диаметра, выполненной цилиндрической, так и на наружной поверхности 7 внутренней трубы 1, выполненной также цилиндрической.

Труба 2 состоит из двух, по меньшей мере, участков 8 и 9, снабженных патрубками подачи холодного теплоносителя 10 и 11, а от завихрителя 3 на расстоянии, определяемом значением полного затухания вращательного движения закрученного потока при полной тепловой нагрузке вихревого теплообменного элемента, расположены завихрители 12 и 13. Во внутренней трубе 1 завихритель 14 установлен на входном участке 15, при этом от него на расстоянии, определяемом значением полного затухания вращательного движения закрученного потока при полной тепловой нагрузке вихревого теплообменного элемента, размещен второй завихритель 16. При этом все завихрители 3, 12, 13, 14, 16, расположенные в теплообменных трубах 1 и 2, выполнены или одинакового, или разного типов. Внутренняя труба 1 с цилиндрическими поверхностями выполнена из биметалла, причем материал внутренней поверхности имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал наружной поверхности 7 внутренней трубы 1 со стороны холодного теплоносителя. На цилиндрической трубе 2 большего диаметра по внешней поверхности 18 на каждом участке между завихрителями, определяемом полным затуханием вращательного движения закрученного потока, выполнены пакеты ребер 19, при этом расстояние между ребрами в каждом пакете уменьшается (l1>l2>l3>…>ln). Например, при расположении пакета ребер 19 на участке 8 внешней поверхности 18 цилиндрической трубы 2 после завихрителя 3 расположено ребро 20, а от него на расстоянии l1 расположено ребро 21, а от него на расстоянии l2 расположено ребро 22 и далее до завихрителя 12. Следующий пакет ребер расположен на участке 9 от завихрителя 12 до завихрителя 13 с таким же соотношением расстояний между ребрами (l1>l2>l3>…>ln). В указанной последовательности располагаются остальные пакеты ребер 19, количество которых определяется длиной вихревого теплообменного элемента. На вертикальной поверхности 23, 24 каждого ребра 20, 21 и 22 пакета ребер 19 расположенного на цилиндрической трубе 2 большего диаметра выполнены винтообразные канавки 25 и 26. При этом направление касательной винтообразной канавки 25, выполненной на вертикальной поверхности 23 ребра 20, имеет направление по ходу движения часовой стрелки (см., например, _ стр. 509, Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1969. – 872 с., ил.), а направление касательной винтообразной канавки 26 на противоположной вертикальной поверхности 24 ребра 21 имеет направление против хода движения часовой стрелки и так далее по всему пакету ребер 19.

Вихревой теплообменный элемент работает следующим образом.

По мере применения потока подогреваемой воды системы отопления или внутреннего воздуха производственного помещения при конвективном теплообмене в межреберном пространстве пакетов ребер 19, особенно в местах соединения ребер 20, 21, 22 с цилиндрической трубой 2 большего диаметра, образуются «застойные зоны» с пограничным слоем, в котором наблюдается ламинарное движение теплоносителя с преимущественным процессом передачи теплоты лишь теплопроводностью вместо конвективного теплообмена, что значительно уменьшает коэффициент теплопередачи (см., например, стр.160, Исаченко В.П. и др. Теплопередача. - М.: Энергоиздат, 1981. – 416 с., ил.), и, как следствие, снижается эффективность использования вихревого теплообменного элемента как источника тепловой энергии.

Для устранения «застойных зон» с ламинарным движением теплоносителя в пограничном слое контакта основания ребер 20, 21, 22 с цилиндрической трубой 2 на вертикальных поверхностях 23 и 24 соответствующих ребер выполнены винтообразные канавки 25 и 26. Подогреваемый теплоноситель (вода системы отопления или внутренний воздух производственного помещения при его конвективном теплообменном нагреве) при движении в межреберном пространстве пакета ребер 19 частично одновременно перемещается как по винтообразным канавкам 25, так и по винтообразным канавкам 26. В связи с тем что перемещение одной части теплоносителя на вертикальной плоскости 23 ребра 20 осуществляется по ходу движения часовой стрелки, а перемещение его другой части на вертикальной плоскости 24 рядом стоящего ребра 21 осуществляется против хода движения часовой стрелки, то в пространстве между ребрами 20 и 21 появляются встречно движущиеся закрученные микропотоки, которые образуют микрозавихрения с резкой турбулизацией пограничного слоя, как в местах соединения ребер 20 и 21 с цилиндрической трубой 2, так и по вертикальным поверхностям 23 и 24. В результате поддерживается нормированное значение коэффициента теплоотдачи за счет турбулизации течения теплоносителя в пограничном слое «застойных зон» пакета ребер 19 (см., например, стр.378, Нащокин В.В. Техническая термодинамика и теплопередача. - М.: Высшая школа, 1980. - 469 с., ил.). Кроме того, устранение образования «застойных зон» предотвращает возможность накопления различных загрязнений, сопутствующих движению обогреваемого теплоносителя (при движении воды системы отопления - это ржавчина, окалина, при нагреве внутреннего воздуха помещений - это твердые частицы пыли, мелкодисперсная влага) как на вертикальных поверхностях 23 и 24, соответствующих ребер 20 и 21, так и на внешней поверхности цилиндрической трубы 2. Это также ухудшает процесс передачи тепловой энергии окружающей среде в связи с переходом процесса теплообмена в тепломассообмен, когда часть тепловой энергии затрачивается на дополнительный нагрев частиц загрязнений, а не на повышение температуры окружающей среды (см., например, стр.323, Цой П.В. Методы расчета отдельных задач тепломассопереноса. - М.: Энергия, 1971. - 384 с., ил.). Термодинамическое расслоение XT на «холодный» осевой и «горячий» периферийный слои приводит к наличию на внутренней поверхности 6 трубы 2 большего диаметра пограничного слоя с тяжелыми частицами среды, имеющими более высокую температуру («горячий слой»), чем XT в целом. В результате наблюдается передача теплоты теплопроводностью по толщине цилиндрической трубы 2 с нагревом наружной поверхности 18 до температуры более высокой, чем окружающая среда. Полученный избыток тепла может использоваться как источник тепловой энергии, например, в системе отопления жилого дома или производственного помещения для конвективного обмена с внутренним воздухом.

Известно, что наибольшей теплоотдающей способностью обладают поверхности теплообменных аппаратов в виде пластинчатых ребер (см., например, стр.168, Коваленко Л.М., Глушков А.Ф. Теплообменники интенсификацией теплоотдачи. - М.: Энергоиздат, 1968. - 240 с.). Особенностью теплообмена в вихревом теплообменном элементе между закрученными горячим теплоносителем (ГТ) и XT является то, что температура как термодинамически расслоенных слоев, так и температура стенки, а следовательно, и количество теплоты, передаваемой теплопроводностью по толщине стенки трубы 2 большего диаметра, уменьшается на участке от одного из завихрителей (например, завихрителя 3) до полного его затухания (до завихрителя 12).

Поэтому для поддержания максимальной теплоотдачи по внешней поверхности трубы 2 расположены пакеты ребер, при этом расстояние между ребрами в каждом пакете уменьшается l1>l2>l3>…>ln. Снижение температуры на внешней поверхности 18 трубы 2 в зоне затухания вращающегося потока при передаче тепла в окружающую среду компенсируется увеличением количества пластинчатых ребер вследствие уменьшения расстояния между ними в данной зоне. В результате тепловой поток равномерно распределяется по пакету ребер 19 и осуществляет подогрев контактируемого с внешней поверхностью 18 трубы 2 внутреннего воздуха помещения с максимальной отдачей тепловой энергии, соответствующей условно одинаковой температуре внешней поверхности 18 на участке 8 (или 9 и т.д.) трубы 2 большего диаметра вне зависимости от процесса затухания вращающегося потока. Данное конструктивное решение существенно увеличивает возможности использования вихревого теплообменного элемента. При термодинамическом расслоении ГТ на выходе из завихрителя 14 (соответственно, на последующих завихрителях 16, установленных на определенном расстоянии по ходу движения ГТ во внутренней трубе 1) наблюдается его расслоение на «горячий» периферийный и «холодный» осевой слои (см., например, Меркулов В.П. Вихревой эффект и его применение в промышленности. - Куйбышев, 1969. - 369 с.). Конвекцией теплота от горячего слоя ГТ (см. фиг.1) передается внутренней поверхности 17 внутренней трубы 1, и далее посредством теплопроводности осуществляется нагрев по толщине материала внутренней трубы 1. Одновременно XT, проходя завихритель 3 (и завихрители 12, 13, расположенные на расстоянии, определяемом значением полного затухания каждого участка 8, 9 трубы 2 большего диаметра), находящийся внутри трубы 2 большего диаметра, на его выходе также расслаивается на «горячий» периферийный, находящийся в зоне 5, и «холодный» осевой слои, при этом «горячий» слой контактирует с наружной поверхностью 7 внутренней трубы 1, отдавая ей свою теплоту конвекцией и далее теплопроводностью. Потоки ГТ и XT закручиваются и перемешиваются в осевом направлении, одновременно осуществляя и вращательное движение. В связи с интенсивным теплообменом между вращающимся потоком XT в трубе 2 и наружной поверхностью 7 внутренней трубы 1 происходит еще больший нагрев периферийного слоя XT в зоне 5, благодаря чему образуется XT с неоднородным полем плотности, что приводит к непрерывному замещению менее тяжелых частиц XT тяжелыми, и этот процесс продолжается вплоть до затухания вращательного движения потока. В результате при выполнении внутренней трубы 1 из однородного материала с постоянным коэффициентом теплопроводности наблюдается процесс затухания передачи теплоты от ГТ к XT (см. фиг.2) из-за наличия в зоне 5, контактирующей с наружной поверхностью 7, теплового потока, идущего от «горячего» слоя XT, направленного вглубь толщины внутренней трубы 1.

Таким образом, в результате встречного направления тепловых потоков ГТ и XT количество теплоты, передаваемое теплопроводностью через материал внутренней трубы 1, определяется разностью количеств теплоты и , т.е. . При этом взаимодействие теплоты, передаваемой теплопроводностью и идущей от периферийного потока ГТ , и теплоты, передаваемой конвекцией из зоны 5 и далее передаваемой теплопроводностью от периферийного «горячего» потока XT , осуществляется примерно на средней линии по толщине стенки внутренней трубы 1 (см. фиг.2), т.к. коэффициент теплопроводности стенки внутри трубы 1 постоянен по ее толщине. Как следствие, наблюдаются значительные теплопотери процесса теплопроводности по толщине трубы 1, а это, соответственно, резко снижает эффективность вихревого способа передачи теплоты, что и обуславливает практическое отсутствие использования в промышленности теплообменных аппаратов с вихревым способом теплопередачи.

Для устранения данного явления внутренняя труба 1 выполняется из биметалла таким образом, что коэффициент теплопроводности λ1, материала внутренней поверхности 17 внутренней трубы 1 со стороны движения ГТ имеет значение в 2,0-2,5 раза выше коэффициента теплопроводности λ2 материала внешней поверхности 7 внутренней трубы 1 со стороны движения XT, при этом толщина каждого из составляющих материалов биметалла имеет равное значение по толщине стенки внутренней трубы 1. Теплота от периферийного «горячего» слоя ГТ передается к внутренней поверхности 17 внутренней трубы 1 с конвекцией и далее теплопроводностью по материалу биметалла с повышенным значением коэффициента теплопроводности и имеет более высокий градиент температур, чем теплота, передаваемая от периферийного потока XT к внешней поверхности 7 внутренней трубы теплопроводностью по материалу биметалла с пониженным значением коэффициента теплопроводности. В этом случае область контакта встречно направленных тепловых потоков смещается в сторону внешней поверхности 7 внутренней трубы 1 и составляет около 20% расстояния от внешней поверхности 7 (см. фиг.3), и это приводит к существенному сокращению теплопотерь, обусловленных направлением теплоты по толщине внутренней трубы 1, что позволяет существенно повысить эффективность использования способа передачи теплоты в рекуперативных теплообменниках, например, с расположением завихрителей внутри полости как трубы 2 с большим диаметром, так и внутри внутренней трубы 1. Оригинальность предлагаемого технического решения достигается тем, что при длительной эксплуатации достигается постоянство коэффициента теплоотдачи процесса теплообмена в пакете ребер, расположенных на цилиндрической поверхности большего диаметра вихревого теплообменного элемента, за счет устранения «застойных зон» с ламинарным пограничным слоем путем выполнения на вертикальных поверхностях рядом расположенных ребер винтообразных канавок, касательные которых имеют противоположное направление. В результате образуются микрозавихрения, приводящие к турбулентному движению подогреваемого теплоносителя в пограничном слое, т.е. ликвидации «застойных зон» и, соответственно, получению нормированного конвективного теплообмена вне зависимости от наличия частиц в движущемся потоке.

Вихревой теплообменный элемент, содержащий соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими поверхностями, при этом труба большего диаметра разделена на участки, внутри каждой из труб установлены, по меньшей мере, два завихрителя одинакового или разного типов, причем один завихритель – на входе в участок, а второй – на расстоянии между ними, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, кроме того, входы теплоносителей в каждый из участков трубы большего диаметра и внутренней трубы выполнены или с одной и той же стороны, или с противоположных сторон по отношению к движению потока, обеспечивая как противоточную, так и прямоточную схему движения теплоносителей в элементе, при этом внутренняя труба с цилиндрическими поверхностями выполнена из биметалла, причем материал поверхности внутренней трубы со стороны горячего теплоносителя имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал поверхности внутренней трубы со стороны холодного теплоносителя, причем на цилиндрической трубе большего диаметра по внешней поверхности на каждом участке, определяемом полным затуханием вращательного движения закрученного потока при полной тепловой нагрузке, выполнены пакеты ребер, причем расстояние между ребрами в каждом пакете уменьшается, отличающийся тем, что на вертикальной поверхности каждого ребра пакета, расположенного на цилиндрической трубе большего диаметра, выполнены винтообразные канавки, причем направление касательной винтообразной канавки на вертикальной поверхности одного ребра имеет направление по ходу движения часовой стрелки, а направление касательной винтообразной канавки на противоположной вертикальной поверхности рядом расположенного ребра имеет направление против хода движения часовой стрелки.
Вихревой теплообменный элемент
Вихревой теплообменный элемент
Вихревой теплообменный элемент
Источник поступления информации: Роспатент

Показаны записи 91-100 из 422.
10.12.2015
№216.013.9651

Способ контроля качества смазочного масла и устройство для его осуществления

Изобретение относится к области технической диагностики технических систем, имеющих замкнутую систему смазки, и может быть использовано для контроля качества моторных масел в процессе эксплуатации. Оценивают степень загрязнения масла в процессе эксплуатации, при этом дополнительно одновременно...
Тип: Изобретение
Номер охранного документа: 0002570101
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b0f

Водоотвод для скатной крыши многоэтажного дома

Изобретение относится к области строительства, в частности к водоотводу для скатной крыши многоэтажного здания. Техническим результатом изобретения является ресурсосберегающая эксплуатация здания за счет использования для освещения в темное время суток подъездов и вспомогательных помещений...
Тип: Изобретение
Номер охранного документа: 0002571320
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9d06

Электрод свинцово-кислотного аккумулятора (варианты)

Изобретение относится к электротехнической промышленности и касается поточного изготовления поверхностных электродов, используемых в производстве свинцово-кислотных аккумуляторов. Техническим результатом изобретения является одновременное повышение удельной емкости, удельной энергии, удельной...
Тип: Изобретение
Номер охранного документа: 0002571823
Дата охранного документа: 20.12.2015
10.03.2016
№216.014.bf61

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вентилятор, на нижнюю и верхнюю поверхности каждой из лопастей вентилятора наносят наноматериал в виде стекловидной пленки, причем нанопокрытие выполнено...
Тип: Изобретение
Номер охранного документа: 0002576948
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.ca94

Способ получения наночастиц никеля, покрытых слоем углерода

Изобретение может быть использовано в неорганической химии. Для получения наночастиц никеля, покрытых слоем углерода, сухие лепестки китайской розы, пропитанные водным раствором хлорида никеля, подвергают термическому разложению в вакууме 10 мбар. Разложение ведут при нагревании до температуры...
Тип: Изобретение
Номер охранного документа: 0002577840
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.caf9

Устройство для термомеханического бурения скважин

Изобретение относится к горной промышленности, в частности к устройствам для бурения и расширения скважин в крепких породах. Устройство включает буровой орган в виде бурового става, на конце которого установлены породоразрушающие элементы и огнеструйная горелка с магистралями подачи топлива,...
Тип: Изобретение
Номер охранного документа: 0002577559
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce4b

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховодными окнами по периметру ее нижней части, воздухоуловитель, водораспределительную систему с суживающимися соплами и расположенную...
Тип: Изобретение
Номер охранного документа: 0002575244
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.db9a

Надстройка здания и способ ее осуществления при реконструкции

Изобретение относится к области строительства, а именно к несущим конструкциям надстраиваемых этажей. Надстройка здания включает блок, состоящий из покрытия и стен надстраиваемого этажа. Покрытие блока выполнено в виде сборной железобетонной панели-оболочки, состоящей из не менее двух...
Тип: Изобретение
Номер охранного документа: 0002579073
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.dc63

Аэротенк-вытеснитель

Изобретение относится к биологической очистке сточных вод и может быть использовано в промышленности и коммунальном хозяйстве. Аэротенк-вытеснитель включает корпус 1, разделенный перегородками на сообщающиеся последовательно коридоры 3, вводы воды и активного ила, выводы очищенной воды и ила,...
Тип: Изобретение
Номер охранного документа: 0002579134
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e8ca

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержат вытяжную башню, при этом вытяжная башня снабжена вентилятором, расположенным в ее верхней части, регулятором температуры с датчиком температуры атмосферного воздуха,...
Тип: Изобретение
Номер охранного документа: 0002575225
Дата охранного документа: 20.02.2016
Показаны записи 91-100 из 235.
13.01.2017
№217.015.8adb

Способ очистки поверхностей меди и ее сплавов от продуктов коррозии и окисления соединениями меди (ii)

Изобретение относится к очистке элементов технологического и бытового оборудования из меди и ее сплавов от продуктов коррозии и продуктов окисления соединениями меди (II) и может быть использовано в различных областях практической деятельности, в научных исследованиях и в аналитическом...
Тип: Изобретение
Номер охранного документа: 0002604162
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8af4

Способ 2d-монтажа (внутреннего монтажа) интегральных микросхем

Изобретение относится к радиоэлектронике и может быть использовано при изготовлении печатных плат, применяемых при конструировании радиоэлектронной техники. Технический результат - повышение степени интеграции и снижение массогабаритных показателей ИМС. Достигается тем, что используется...
Тип: Изобретение
Номер охранного документа: 0002604209
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cdf

Поливомоечная машина

Изобретение относится к машинам для летнего содержания автомобильных дорог. Поливомоечная машина содержит базовый автомобиль с цистерной и основные сопла. На внутренней поверхности основных сопел расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения...
Тип: Изобретение
Номер охранного документа: 0002604598
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.91fc

Способ измерений и обработки начальных неправильностей формы тонкостенных цилиндрических оболочек

Изобретение относится к измерительной технике в машиностроении и может быть использовано для контроля формы цилиндрических поверхностей тонкостенных цилиндрических оболочек в научных исследованиях и производственной практике. Достигаемый технический результат изобретения заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002605642
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9a90

Управляемый коммутатор напряжений, несущих информацию

Изобретение относится к информационно-измерительной технике, автоматике и промышленной электронике. Технический результат заключается в обеспечении возможности поддерживать коммутатор в замкнутом состоянии продолжительное время без ухудшения параметров: остаточного напряжения коммутатора и его...
Тип: Изобретение
Номер охранного документа: 0002610298
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9c65

Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный...
Тип: Изобретение
Номер охранного документа: 0002610406
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.9cdb

Градирня с поверхностным охлаждением

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды ТЭЦ, АЭС и промышленных предприятий. Градирня с поверхностным охлаждением содержит прямоугольный в поперечном сечении корпус с воздуховпускными окнами в его нижней части, установленный на...
Тип: Изобретение
Номер охранного документа: 0002610369
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.aa65

Автономная тепловая пушка

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления. Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с...
Тип: Изобретение
Номер охранного документа: 0002611700
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ab2a

Способ укладки дорожной разметки

Изобретение относится к строительству и может быть использовано при сооружении автомобильных дорог, в частности при изготовлении дорожной разметки. Способ укладки дорожной разметки заключается в том, что при укладке дорожного полотна формируют нижний слой асфальтобетонного покрытия. После этого...
Тип: Изобретение
Номер охранного документа: 0002612168
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ab68

Способ получения медных гальванических покрытий, модифицированных наночастицами электроэрозионной меди

Изобретение относится к области гальванотехники и может быть использовано для модификации медных гальванических покрытий. Способ включает введение в сульфатный электролит меднения наночастиц меди, полученных электроэрозионным диспергированием медных отходов, размерностью 2,5-100 нм с...
Тип: Изобретение
Номер охранного документа: 0002612119
Дата охранного документа: 02.03.2017
+ добавить свой РИД