×
25.08.2017
217.015.d2ff

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002621816
Дата охранного документа
07.06.2017
Аннотация: Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим радиус-вектором КА. При нахождении ε в определенном интервале, зависящем от Н, от углов (,) полураствора зон чувствительности рабочей и тыльной поверхностей СБ и от максимального значения угла () между нормалью к рабочей поверхности СБ и направлением на Солнце, - разворачивают СБ в положение, при котором излучение Земли поступает на СБ вне указанных зон чувствительности. Это положение отвечает совмещению указанной нормали с плоскостью, содержащей направление на Солнце и радиус-вектор КА. При этом угол (ρ) между этой нормалью и радиус-вектором КА лежит в интервале, зависящем от ε, ,, , Н и угла (γ) между направлениями от КА в надир и на ближайшую к КА точку терминатора. В данном положении измеряют напряжение, ток и выходную мощность СБ с учетом углов ε и ρ. Технический результат состоит в минимизации влияния излучения Земли при определении выходной мощности СБ. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Основной электрической характеристикой СБ является выходная мощность СБ (эта мощность отличается от текущей действительной выходной мощности, зависящей от нагрузки и влияния окружающей среды). На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю. 0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).

Недостаток указанного способа определения выходной мощности СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете проводятся специальные полетные операции - сеансы оценки эффективности СБ, в которых осуществляется измерение фактической выходной мощности СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (против нормали к рабочей поверхности СБ), при этом текущая эффективность СБ оценивается как отношение измеренной фактической выходной мощности СБ (текущей максимальной выходной мощности СБ) к ее номинальному значению - проектному или некоторому исходному значению (например, на момент начала функционирования КА).

Наиболее близким из аналогов, принятым за прототип, является способ определения максимальной выходной мощности солнечных батарей космического аппарата (Патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006), согласно которому разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, измеряют угол между направлением на Солнце и плоскостью орбиты КА, на витках, на которых значение угла, равное 180° за вычетом суммы угла полураствора видимого с КА диска Земли, и угла полураствора зоны чувствительности рабочей поверхности СБ, превышает измеренный выше угол, измеряют угол возвышения направления на Солнце над видимым с КА горизонтом Земли, измеряют значения напряжения и тока от СБ и максимальную выходную мощность двусторонних СБ и СБ, имеющих положительную выходную мощность их тыльной поверхности, определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой стороны, определяемые из условия равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности панелей СБ, а максимальную выходную мощность односторонних СБ определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой или тыльной сторон, определяемые из условия равенства или превышения значением угла возвышения направления на Солнце над видимым с КА горизонтом Земли угла полураствора зоны чувствительности рабочей поверхности СБ.

Способ-прототип минимизирует поступление отраженного от Земли излучения на рабочую поверхность панели СБ за счет наведения нормали к рабочей поверхности СБ на Солнце в момент равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности СБ (или превышения первого угла над вторым), чем уменьшается влияние отраженного от Земли излучения на определение выходной мощности СБ.

Способ-прототип имеет существенный недостаток - он не позволяет в максимальной степени уменьшить (вплоть до исключения) поступление уходящего от Земли излучения на тыльную поверхность СБ, что оказывает существенное негативное влияние на решение задачи определения выходной мощности и последующей оценки эффективности СБ, имеющих положительную выходную мощность тыльной поверхности СБ.

Действительно, при наведении нормали к рабочей поверхности СБ на Солнце в момент равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности СБ (обозначаем его как ) значение угла между нормалью к тыльной поверхности СБ и направлением в надир составляет величину 180°-Q-, где Q - угол полураствора видимого с КА диска Земли, что соответствует тому, что, например, при угле полураствора зоны чувствительности рабочей поверхности СБ =85° и высоте околокруговой орбиты КА 350 км (высота орбиты таких КА, как ТПК «Союз», ТГК «Прогресс», международной космической станции, для такой высоты орбиты значение угла полураствора видимого с КА диска Земли Q≈71,4°) нормаль к тыльной поверхности СБ отстоит от направления в надир на угол ≈23,5° - т.е. нормаль к тыльной поверхности СБ направлена на освещенную Солнцем подстилающую земную поверхность, причем высота Солнца в точке пересечения направления нормали к тыльной поверхности СБ с подстилающей земной поверхностью составляет ≈65°. Таким образом, уходящее от подстилающей земной поверхности излучение поступает на тыльную поверхность СБ, воспринимается СБ для генерации тока, что вносит неопределенность в решение задачи определения выходной мощности и последующей оценки эффективности СБ, имеющих положительную выходную мощность тыльной поверхности СБ.

Задачей, на решение которой направлено настоящее изобретение, является увеличение точности определения выходной мощности и оценки текущей эффективности СБ.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в минимизации (исключении) влияния уходящего от Земли излучения при определении выходной мощности и оценке текущей эффективности СБ.

Технический результат достигается тем, что в способе определения выходной мощности солнечной батареи КА, включающем разворот панели солнечной батареи, имеющей положительную выходную мощность своей тыльной поверхности, относительно направления на Солнце, измерение значений напряжения и тока от солнечной батареи и определение выходной мощности солнечной батареи по измеренным значениям напряжения и тока дополнительно измеряют высоту Н околокруговой орбиты КА, измеряют угол ε между направлением на Солнце и радиус-вектором КА, при значениях измеренного угла, находящихся в интервале , где

,

Q - угол полураствора видимого с КА диска Земли;

R - радиус Земли;

, - углы полураствора зон чувствительности рабочей и тыльной поверхности солнечной батареи соответственно;

- задаваемое максимальное значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце, разворачивают солнечную батарею в положение, при котором уходящее от Земли излучение поступает на солнечную батарею вне зон чувствительности рабочей и тыльной поверхностей солнечной батареи, определяемое из условия совмещения нормали к рабочей поверхности солнечной батареи с плоскостью, образованной направлением на Солнце и радиус-вектором КА, при нахождении значения угла ρ между нормалью к рабочей поверхности солнечной батареи и радиус-вектором КА в интервале , где

γ - угол между направлениями от КА в надир и на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли,

после чего измеряют значения напряжения U и тока I от солнечной батареи и выходную мощность солнечной батареи, соответствующую воздействию солнечного излучения перпендикулярно ее рабочей поверхности, определяют по соотношению .

Суть предлагаемого изобретения поясняется на фиг. 1, на которой представлена предлагаемая схема ориентации СБ и введены обозначения:

Р - СБ КА;

N - нормаль к рабочей поверхности СБ;

S - вектор направления на Солнце;

О - центр Земли;

ОР - радиус-вектор КА;

R - радиус Земли;

Н - высота околокруговой орбиты КА;

D1D2 - линия видимого с КА горизонта Земли;

Q - угол полураствора видимого с КА диска Земли;

ε - угол между направлением на Солнце и радиус-вектором КА;

, - углы полураствора зон чувствительности рабочей и тыльной поверхностей СБ соответственно;

- задаваемое максимальное значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце;

ρ - угол между нормалью к рабочей поверхности СБ и радиус-вектором КА;

B1D1B0 - видимая с КА освещенная Солнцем поверхность Земли;

B1D2B0 - видимая с КА теневая поверхность Земли;

В1В0 - линия границы между видимой с КА освещенной Солнцем частью поверхности Земли и видимой с КА теневой частью поверхности Земли;

B1 - ближайшая к КА точка границы между освещенной Солнцем и теневой частями поверхности Земли;

γ - угол между направлениями от КА в надир и на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1);

ϕ - угол между радиус-вектором КА и направлением на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1);

В0 - максимально удаленная от КА точка видимой с КА границы между освещенной Солнцем и теневой частями поверхности Земли;

A1A2 - линия пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли;

A1 - ближайшая к КА точка линии пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли;

B1B2 - линия пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли, построенная для положения СБ, при котором граница зоны чувствительности тыльной поверхности СБ проходит через ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1).

КВ0 - линия пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли, построенная для положения СБ, при котором граница зоны чувствительности тыльной поверхности СБ проходит через максимально удаленную от КА точку видимой с КА границы между освещенной Солнцем и теневой частями поверхности Земли (точку В0).

Поясним предложенные в способе действия.

Используем понятия зон чувствительности рабочей и тыльной поверхностей панели СБ - областей, определяемых конструктивными особенностями элементов СБ, при освещении со стороны которых СБ способна вырабатывать электрический ток. При освещении поверхностей панели СБ извне данных областей ток от СБ отсутствует или пренебрежительно мал. Данные зоны задаем углами полураствора зон чувствительности рабочей и тыльной поверхностей СБ и соответственно.

Для решения поставленной задачи в предложенном техническом решении выполнят разворот СБ в положение, в котором нормаль к рабочей поверхности СБ N лежит в плоскости, образованной направлением на Солнце и радиус-вектором КА, и выставлена под углом к вектору направления на Солнце S, при этом значение угла между N и S задают таким образом, что уходящее от Земли излучение поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ. При этом для обеспечения необходимого уровня прихода электроэнергии от СБ требуют, чтобы значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце не превышало некоторое задаваемое значение .

Непосредственно после выхода КА из тени Земли на освещенную часть орбиты и непосредственно перед входом КА в тень Земли уходящее от Земли излучение (излучение от области B1D1B0) поступает на СБ КА. При этом видимый с КА угловой размер этой области, определяемый углом ∠B1PD1, зависит значения угла ε между направлением на Солнце и радиус-вектором КА.

Значение угла ε, при котором при значении угла между нормалью к рабочей поверхности СБ и направлением на Солнце равным зона чувствительности рабочей поверхности СБ касается видимого с КА освещенного горизонта Земли (в этом случае совпадают направления PC и PD1), составляет . Это значение является максимальным значением угла ε, при котором возможно выполнить разворот СБ в требуемое описанное выше положение.

Обозначаем как значение угла ε, при котором значение угла ∠B1PD1 равно значению угла между зонами чувствительности поверхностей панели СБ ∠A1PC (в этом случае совпадают направления PC и PD1 и совпадают направления PB1 и PA1). Значение определяется соотношением

где Q - угол полураствора видимого с КА диска Земли,

R - радиус Земли.

Значение является минимальным значением угла ε, при котором возможно выполнить разворот СБ в требуемое описанное выше положение. Соотношение (1) получается из (2) и соотношений:

Соотношение (1) верно для СБ, для которых угол между зонами чувствительности поверхностей панели СБ∠A1PC не превышает Q:

что соответствует значению ≥90°. Например, при высоте околокруговой орбиты КА 350 км угол полураствора видимого с КА диска Земли Q≈71,4° и данное условие выполняется, в частности, при .

В предлагаемом техническом решении осуществляют измерение высоты Н околокруговой орбиты КА и осуществляют измерение угла ε между направлением на Солнце и радиус-вектором КА.

При значениях угла ε, находящихся в интервале , выполняют разворот СБ в положение, при котором уходящее от Земли излучение поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ. Данное положение СБ определяется следующими условиями:

- нормаль к рабочей поверхности СБ лежит в плоскости, образованной направлением на Солнце и радиус-вектором КА,

- значение угла ρ между нормалью к рабочей поверхности СБ и радиус-вектором КА находится в интервале

где γ - угол между направлениями от КА в надир и на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли - находится как решение уравнения

Уравнение (8) после подстановки выражения (2) принимает вид

Максимальное значение угла ρ в интервале (7) составляет и соответствует положению СБ, при котором совпадают направления PC и PD1.

Минимальное значение угла ρ в интервале (7) выбирается как максимум из значений и .

Значение является минимальным значением угла ρ, при котором значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце не превышает значение .

Значение - γ является значением угла ρ, при котором граница зоны чувствительности тыльной поверхности СБ проходит через ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку В1), что соответствует положению СБ, при котором совпадают направления PA1 и PB1. Уравнение (9) для нахождения значения угла γ получается из соотношений (2)÷(6) и решается, например, методом последовательных приближений.

При описанном положении СБ излучение от видимой с КА освещенной Солнцем поверхности Земли поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ - поступает со стороны угла между зонами чувствительности поверхностей панели СБ ∠A1PC.

Некоторая особенность возникает в случае, когда СБ занимает положение, при котором граница зоны чувствительности тыльной поверхности СБ проходит через ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1). При таком положении СБ точка А1 совмещена с точкой B1 и угол между направлением нормали к тыльной поверхности панели СБ и направлением PB1 равен . В этом случае на края зоны чувствительности тыльной поверхности СБ поступает излучение от узкой освещенной Солнцем области земной поверхности, расположенной вдоль линии границы между видимой с КА освещенной Солнцем частью поверхности Земли и видимой с КА теневой частью поверхности Земли (вдоль линии B1B0) - данная область показана на фиг. 1 как область B0B1B2. Поступлением данного излучения на СБ можно пренебречь исходя из следующих соображений:

1) размеры данной области B0B1B2 пренебрежительно малы. Например, для околокруговой орбиты КА 350 км (орбита ТПК «Союз», ТГК «Прогресс», МКС) угол полураствора видимого с КА диска Земли Q≈71,4°, что соответствует тому, что угловой размер видимого с КА диска Земли, измеренный из центра Земли, составляет достаточно небольшую величину ∠D1OD2≈37,2°, при которой видимую с КА подстилающую поверхность можно считать практически плоской поверхностью, на которой линии B1B2 и B1B0 практически совпадают;

2) интенсивность излучения от данной области B0B1B2 пренебрежительно мала ввиду того, что данная область слабо освещена Солнцем (Солнце освещает ее практически по касательной);

3) излучение от данной области В0В1В2 поступает на край зоны чувствительности тыльной поверхности СБ и, соответственно, вносит пренебрежительно малый вклад в генерацию тока СБ.

Однако, при необходимости, можно полностью исключить возможность возникновения данного случая путем формального увеличения зоны чувствительности тыльной поверхности СБ - использования вместо значения увеличенное значение +Δ, где поправка Δ=∠KPB1 рассчитывается исходя из условия прохождения границы зоны чувствительности тыльной поверхности СБ через максимально удаленную от КА точку видимой с КА границы между освещенной Солнцем и теневой частями поверхности Земли (точку В0).

После выполнения разворота и выставки СБ в описанное положение относительно направления на Солнце и Земли выполняют измерения значений напряжения U и тока I от СБ.

Поскольку текущий ток I от СБ определятся выражением (см. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57)

,

где IMAX - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панели СБ перпендикулярно солнечным лучам;

α - угол между направлением на Солнце и нормалью к рабочей поверхности СБ.

то , и с учетом того, что угол между направлением на Солнце и нормалью к рабочей поверхности СБ α=ε-ρ, выходную мощность СБ, соответствующую воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, определяют по соотношению .

Например, при значениях угла между направлением на Солнце и нормалью к рабочей поверхности СБ α=ε-ρ=30° (cos(ε-ρ)=0,866) и α=ε-ρ=60° (cos(ε-ρ)=0,5) значение выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, равно, соответственно, и .

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение позволяет минимизировать (исключить) влияние уходящего от Земли излучения при определении выходной мощности и оценке текущей эффективности СБ путем минимизации (исключения) поступления уходящего от подстилающей земной поверхности излучения в зону чувствительности тыльной поверхности СБ при обеспечении необходимого уровня освещенности Солнцем рабочей поверхности СБ.

Данный технический результат достигается путем выставки СБ КА в специальные положения, при которых излучение от видимой с КА освещенной поверхности Земли поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ. Этим минимизируется (исключается) недостаточно точно прогнозируемое увеличение текущих значений тока от СБ, получаемое за счет поступления на СБ уходящего от Земли излучения, и, следовательно, увеличивается точность определения искомой выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, и получаемых на ее основе оценок текущей эффективности СБ.

Указанный технический эффект достигается за счет измерения предложенных орбитальных параметров, проверки выполнения связанных с ними условий, выполнения в моменты удовлетворения проверяемых условий разворота СБ относительно Солнца и Земли в предложенные положения, измерения напряжения и тока в предложенной ориентации СБ и определения выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, по измеренных параметрам и по предложенному соотношению.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 379.
27.06.2013
№216.012.50b1

Способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов для его реализации

Группа изобретений относится к микробиологии. Предложены способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов грибов для осуществления указанного способа....
Тип: Изобретение
Номер охранного документа: 0002486250
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5285

Установка для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002486718
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.54e0

Способ определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали...
Тип: Изобретение
Номер охранного документа: 0002487331
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.554b

Фотоэлемент приемника-преобразователя лазерного излучения в космосе

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА. Фотоэлемент...
Тип: Изобретение
Номер охранного документа: 0002487438
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.597a

Орбитальная космическая система

Изобретение относится к системам космических объектов (КО) с передачей между ними энергии и импульса посредством лазерного излучения и может быть использовано для КО, на борту которых создаются условия микрогравитации на уровне ~10…10 ускорения на поверхности Земли. Система включает в себя...
Тип: Изобретение
Номер охранного документа: 0002488527
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a4d

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для...
Тип: Изобретение
Номер охранного документа: 0002488738
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a7a

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, в частности к системам измерения уровня заправки ракетно-космической техники. Сущность: формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток...
Тип: Изобретение
Номер охранного документа: 0002488783
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a80

Герметизированное устройство и способ подвода текучей среды в полость герметизированного устройства с ее герметизацией

Группа изобретений относится к области испытательной техники и направлена на повышение технологичности и увеличение ресурса использования, что обеспечивается за счет того, что герметизированное устройство содержит корпус с расточкой, сообщенной с внутренней полостью корпуса, установленный в...
Тип: Изобретение
Номер охранного документа: 0002488789
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5fe5

Способ управления движением активного космического объекта, стыкуемого с пассивным космическим объектом

Изобретение относится к космической технике и может быть использовано для стыковки двух космических объектов, один из которых активный, а другой - пассивный. На опорную орбиту выводят активный космический объект (АКО), определяют характеристики импульсов сближения (ХИС) по номинальным...
Тип: Изобретение
Номер охранного документа: 0002490181
Дата охранного документа: 20.08.2013
Показаны записи 21-30 из 353.
27.06.2013
№216.012.5027

Устройство контроля ориентации пассивных космических аппаратов

Изобретение относится к космической технике и может быть использовано при выполнении в космосе операций сближения, облета, зависания, причаливания со стыковкой космических аппаратов (КА), в авиации для обеспечения посадки летательных аппаратов в условиях ограниченной видимости, а также для...
Тип: Изобретение
Номер охранного документа: 0002486112
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5028

Система запуска криогенного жидкостного ракетного двигателя космического объекта

Изобретение относится к ракетным двигательным установкам на криогенном топливе. Система запуска относится к жидкостному ракетному двигателю, включающему в себя криогенный топливный бак (1), турбонасосные агрегаты (ТНА) (2, 6), газогенератор (7), сообщенный с турбиной (18) ТНА (6), камеру...
Тип: Изобретение
Номер охранного документа: 0002486113
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50b1

Способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов для его реализации

Группа изобретений относится к микробиологии. Предложены способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов грибов для осуществления указанного способа....
Тип: Изобретение
Номер охранного документа: 0002486250
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5285

Установка для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002486718
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.54b8

Термокомпрессивное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для термоциклирования...
Тип: Изобретение
Номер охранного документа: 0002487291
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.54e0

Способ определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали...
Тип: Изобретение
Номер охранного документа: 0002487331
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.554b

Фотоэлемент приемника-преобразователя лазерного излучения в космосе

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА. Фотоэлемент...
Тип: Изобретение
Номер охранного документа: 0002487438
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.597a

Орбитальная космическая система

Изобретение относится к системам космических объектов (КО) с передачей между ними энергии и импульса посредством лазерного излучения и может быть использовано для КО, на борту которых создаются условия микрогравитации на уровне ~10…10 ускорения на поверхности Земли. Система включает в себя...
Тип: Изобретение
Номер охранного документа: 0002488527
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a4d

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для...
Тип: Изобретение
Номер охранного документа: 0002488738
Дата охранного документа: 27.07.2013
+ добавить свой РИД