×
25.08.2017
217.015.d2ff

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002621816
Дата охранного документа
07.06.2017
Аннотация: Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим радиус-вектором КА. При нахождении ε в определенном интервале, зависящем от Н, от углов (,) полураствора зон чувствительности рабочей и тыльной поверхностей СБ и от максимального значения угла () между нормалью к рабочей поверхности СБ и направлением на Солнце, - разворачивают СБ в положение, при котором излучение Земли поступает на СБ вне указанных зон чувствительности. Это положение отвечает совмещению указанной нормали с плоскостью, содержащей направление на Солнце и радиус-вектор КА. При этом угол (ρ) между этой нормалью и радиус-вектором КА лежит в интервале, зависящем от ε, ,, , Н и угла (γ) между направлениями от КА в надир и на ближайшую к КА точку терминатора. В данном положении измеряют напряжение, ток и выходную мощность СБ с учетом углов ε и ρ. Технический результат состоит в минимизации влияния излучения Земли при определении выходной мощности СБ. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Основной электрической характеристикой СБ является выходная мощность СБ (эта мощность отличается от текущей действительной выходной мощности, зависящей от нагрузки и влияния окружающей среды). На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю. 0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).

Недостаток указанного способа определения выходной мощности СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете проводятся специальные полетные операции - сеансы оценки эффективности СБ, в которых осуществляется измерение фактической выходной мощности СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (против нормали к рабочей поверхности СБ), при этом текущая эффективность СБ оценивается как отношение измеренной фактической выходной мощности СБ (текущей максимальной выходной мощности СБ) к ее номинальному значению - проектному или некоторому исходному значению (например, на момент начала функционирования КА).

Наиболее близким из аналогов, принятым за прототип, является способ определения максимальной выходной мощности солнечных батарей космического аппарата (Патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006), согласно которому разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, измеряют угол между направлением на Солнце и плоскостью орбиты КА, на витках, на которых значение угла, равное 180° за вычетом суммы угла полураствора видимого с КА диска Земли, и угла полураствора зоны чувствительности рабочей поверхности СБ, превышает измеренный выше угол, измеряют угол возвышения направления на Солнце над видимым с КА горизонтом Земли, измеряют значения напряжения и тока от СБ и максимальную выходную мощность двусторонних СБ и СБ, имеющих положительную выходную мощность их тыльной поверхности, определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой стороны, определяемые из условия равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности панелей СБ, а максимальную выходную мощность односторонних СБ определяют как произведение значений напряжения и тока от СБ, измеренных в моменты, в которые отраженное от Земли излучение поступает на панели СБ с их торцевой или тыльной сторон, определяемые из условия равенства или превышения значением угла возвышения направления на Солнце над видимым с КА горизонтом Земли угла полураствора зоны чувствительности рабочей поверхности СБ.

Способ-прототип минимизирует поступление отраженного от Земли излучения на рабочую поверхность панели СБ за счет наведения нормали к рабочей поверхности СБ на Солнце в момент равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности СБ (или превышения первого угла над вторым), чем уменьшается влияние отраженного от Земли излучения на определение выходной мощности СБ.

Способ-прототип имеет существенный недостаток - он не позволяет в максимальной степени уменьшить (вплоть до исключения) поступление уходящего от Земли излучения на тыльную поверхность СБ, что оказывает существенное негативное влияние на решение задачи определения выходной мощности и последующей оценки эффективности СБ, имеющих положительную выходную мощность тыльной поверхности СБ.

Действительно, при наведении нормали к рабочей поверхности СБ на Солнце в момент равенства значений угла возвышения направления на Солнце над видимым с КА горизонтом Земли и угла полураствора зоны чувствительности рабочей поверхности СБ (обозначаем его как ) значение угла между нормалью к тыльной поверхности СБ и направлением в надир составляет величину 180°-Q-, где Q - угол полураствора видимого с КА диска Земли, что соответствует тому, что, например, при угле полураствора зоны чувствительности рабочей поверхности СБ =85° и высоте околокруговой орбиты КА 350 км (высота орбиты таких КА, как ТПК «Союз», ТГК «Прогресс», международной космической станции, для такой высоты орбиты значение угла полураствора видимого с КА диска Земли Q≈71,4°) нормаль к тыльной поверхности СБ отстоит от направления в надир на угол ≈23,5° - т.е. нормаль к тыльной поверхности СБ направлена на освещенную Солнцем подстилающую земную поверхность, причем высота Солнца в точке пересечения направления нормали к тыльной поверхности СБ с подстилающей земной поверхностью составляет ≈65°. Таким образом, уходящее от подстилающей земной поверхности излучение поступает на тыльную поверхность СБ, воспринимается СБ для генерации тока, что вносит неопределенность в решение задачи определения выходной мощности и последующей оценки эффективности СБ, имеющих положительную выходную мощность тыльной поверхности СБ.

Задачей, на решение которой направлено настоящее изобретение, является увеличение точности определения выходной мощности и оценки текущей эффективности СБ.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в минимизации (исключении) влияния уходящего от Земли излучения при определении выходной мощности и оценке текущей эффективности СБ.

Технический результат достигается тем, что в способе определения выходной мощности солнечной батареи КА, включающем разворот панели солнечной батареи, имеющей положительную выходную мощность своей тыльной поверхности, относительно направления на Солнце, измерение значений напряжения и тока от солнечной батареи и определение выходной мощности солнечной батареи по измеренным значениям напряжения и тока дополнительно измеряют высоту Н околокруговой орбиты КА, измеряют угол ε между направлением на Солнце и радиус-вектором КА, при значениях измеренного угла, находящихся в интервале , где

,

Q - угол полураствора видимого с КА диска Земли;

R - радиус Земли;

, - углы полураствора зон чувствительности рабочей и тыльной поверхности солнечной батареи соответственно;

- задаваемое максимальное значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце, разворачивают солнечную батарею в положение, при котором уходящее от Земли излучение поступает на солнечную батарею вне зон чувствительности рабочей и тыльной поверхностей солнечной батареи, определяемое из условия совмещения нормали к рабочей поверхности солнечной батареи с плоскостью, образованной направлением на Солнце и радиус-вектором КА, при нахождении значения угла ρ между нормалью к рабочей поверхности солнечной батареи и радиус-вектором КА в интервале , где

γ - угол между направлениями от КА в надир и на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли,

после чего измеряют значения напряжения U и тока I от солнечной батареи и выходную мощность солнечной батареи, соответствующую воздействию солнечного излучения перпендикулярно ее рабочей поверхности, определяют по соотношению .

Суть предлагаемого изобретения поясняется на фиг. 1, на которой представлена предлагаемая схема ориентации СБ и введены обозначения:

Р - СБ КА;

N - нормаль к рабочей поверхности СБ;

S - вектор направления на Солнце;

О - центр Земли;

ОР - радиус-вектор КА;

R - радиус Земли;

Н - высота околокруговой орбиты КА;

D1D2 - линия видимого с КА горизонта Земли;

Q - угол полураствора видимого с КА диска Земли;

ε - угол между направлением на Солнце и радиус-вектором КА;

, - углы полураствора зон чувствительности рабочей и тыльной поверхностей СБ соответственно;

- задаваемое максимальное значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце;

ρ - угол между нормалью к рабочей поверхности СБ и радиус-вектором КА;

B1D1B0 - видимая с КА освещенная Солнцем поверхность Земли;

B1D2B0 - видимая с КА теневая поверхность Земли;

В1В0 - линия границы между видимой с КА освещенной Солнцем частью поверхности Земли и видимой с КА теневой частью поверхности Земли;

B1 - ближайшая к КА точка границы между освещенной Солнцем и теневой частями поверхности Земли;

γ - угол между направлениями от КА в надир и на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1);

ϕ - угол между радиус-вектором КА и направлением на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1);

В0 - максимально удаленная от КА точка видимой с КА границы между освещенной Солнцем и теневой частями поверхности Земли;

A1A2 - линия пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли;

A1 - ближайшая к КА точка линии пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли;

B1B2 - линия пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли, построенная для положения СБ, при котором граница зоны чувствительности тыльной поверхности СБ проходит через ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1).

КВ0 - линия пересечения границы зоны чувствительности тыльной поверхности СБ с поверхностью Земли, построенная для положения СБ, при котором граница зоны чувствительности тыльной поверхности СБ проходит через максимально удаленную от КА точку видимой с КА границы между освещенной Солнцем и теневой частями поверхности Земли (точку В0).

Поясним предложенные в способе действия.

Используем понятия зон чувствительности рабочей и тыльной поверхностей панели СБ - областей, определяемых конструктивными особенностями элементов СБ, при освещении со стороны которых СБ способна вырабатывать электрический ток. При освещении поверхностей панели СБ извне данных областей ток от СБ отсутствует или пренебрежительно мал. Данные зоны задаем углами полураствора зон чувствительности рабочей и тыльной поверхностей СБ и соответственно.

Для решения поставленной задачи в предложенном техническом решении выполнят разворот СБ в положение, в котором нормаль к рабочей поверхности СБ N лежит в плоскости, образованной направлением на Солнце и радиус-вектором КА, и выставлена под углом к вектору направления на Солнце S, при этом значение угла между N и S задают таким образом, что уходящее от Земли излучение поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ. При этом для обеспечения необходимого уровня прихода электроэнергии от СБ требуют, чтобы значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце не превышало некоторое задаваемое значение .

Непосредственно после выхода КА из тени Земли на освещенную часть орбиты и непосредственно перед входом КА в тень Земли уходящее от Земли излучение (излучение от области B1D1B0) поступает на СБ КА. При этом видимый с КА угловой размер этой области, определяемый углом ∠B1PD1, зависит значения угла ε между направлением на Солнце и радиус-вектором КА.

Значение угла ε, при котором при значении угла между нормалью к рабочей поверхности СБ и направлением на Солнце равным зона чувствительности рабочей поверхности СБ касается видимого с КА освещенного горизонта Земли (в этом случае совпадают направления PC и PD1), составляет . Это значение является максимальным значением угла ε, при котором возможно выполнить разворот СБ в требуемое описанное выше положение.

Обозначаем как значение угла ε, при котором значение угла ∠B1PD1 равно значению угла между зонами чувствительности поверхностей панели СБ ∠A1PC (в этом случае совпадают направления PC и PD1 и совпадают направления PB1 и PA1). Значение определяется соотношением

где Q - угол полураствора видимого с КА диска Земли,

R - радиус Земли.

Значение является минимальным значением угла ε, при котором возможно выполнить разворот СБ в требуемое описанное выше положение. Соотношение (1) получается из (2) и соотношений:

Соотношение (1) верно для СБ, для которых угол между зонами чувствительности поверхностей панели СБ∠A1PC не превышает Q:

что соответствует значению ≥90°. Например, при высоте околокруговой орбиты КА 350 км угол полураствора видимого с КА диска Земли Q≈71,4° и данное условие выполняется, в частности, при .

В предлагаемом техническом решении осуществляют измерение высоты Н околокруговой орбиты КА и осуществляют измерение угла ε между направлением на Солнце и радиус-вектором КА.

При значениях угла ε, находящихся в интервале , выполняют разворот СБ в положение, при котором уходящее от Земли излучение поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ. Данное положение СБ определяется следующими условиями:

- нормаль к рабочей поверхности СБ лежит в плоскости, образованной направлением на Солнце и радиус-вектором КА,

- значение угла ρ между нормалью к рабочей поверхности СБ и радиус-вектором КА находится в интервале

где γ - угол между направлениями от КА в надир и на ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли - находится как решение уравнения

Уравнение (8) после подстановки выражения (2) принимает вид

Максимальное значение угла ρ в интервале (7) составляет и соответствует положению СБ, при котором совпадают направления PC и PD1.

Минимальное значение угла ρ в интервале (7) выбирается как максимум из значений и .

Значение является минимальным значением угла ρ, при котором значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце не превышает значение .

Значение - γ является значением угла ρ, при котором граница зоны чувствительности тыльной поверхности СБ проходит через ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку В1), что соответствует положению СБ, при котором совпадают направления PA1 и PB1. Уравнение (9) для нахождения значения угла γ получается из соотношений (2)÷(6) и решается, например, методом последовательных приближений.

При описанном положении СБ излучение от видимой с КА освещенной Солнцем поверхности Земли поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ - поступает со стороны угла между зонами чувствительности поверхностей панели СБ ∠A1PC.

Некоторая особенность возникает в случае, когда СБ занимает положение, при котором граница зоны чувствительности тыльной поверхности СБ проходит через ближайшую к КА точку границы между освещенной Солнцем и теневой частями поверхности Земли (точку B1). При таком положении СБ точка А1 совмещена с точкой B1 и угол между направлением нормали к тыльной поверхности панели СБ и направлением PB1 равен . В этом случае на края зоны чувствительности тыльной поверхности СБ поступает излучение от узкой освещенной Солнцем области земной поверхности, расположенной вдоль линии границы между видимой с КА освещенной Солнцем частью поверхности Земли и видимой с КА теневой частью поверхности Земли (вдоль линии B1B0) - данная область показана на фиг. 1 как область B0B1B2. Поступлением данного излучения на СБ можно пренебречь исходя из следующих соображений:

1) размеры данной области B0B1B2 пренебрежительно малы. Например, для околокруговой орбиты КА 350 км (орбита ТПК «Союз», ТГК «Прогресс», МКС) угол полураствора видимого с КА диска Земли Q≈71,4°, что соответствует тому, что угловой размер видимого с КА диска Земли, измеренный из центра Земли, составляет достаточно небольшую величину ∠D1OD2≈37,2°, при которой видимую с КА подстилающую поверхность можно считать практически плоской поверхностью, на которой линии B1B2 и B1B0 практически совпадают;

2) интенсивность излучения от данной области B0B1B2 пренебрежительно мала ввиду того, что данная область слабо освещена Солнцем (Солнце освещает ее практически по касательной);

3) излучение от данной области В0В1В2 поступает на край зоны чувствительности тыльной поверхности СБ и, соответственно, вносит пренебрежительно малый вклад в генерацию тока СБ.

Однако, при необходимости, можно полностью исключить возможность возникновения данного случая путем формального увеличения зоны чувствительности тыльной поверхности СБ - использования вместо значения увеличенное значение +Δ, где поправка Δ=∠KPB1 рассчитывается исходя из условия прохождения границы зоны чувствительности тыльной поверхности СБ через максимально удаленную от КА точку видимой с КА границы между освещенной Солнцем и теневой частями поверхности Земли (точку В0).

После выполнения разворота и выставки СБ в описанное положение относительно направления на Солнце и Земли выполняют измерения значений напряжения U и тока I от СБ.

Поскольку текущий ток I от СБ определятся выражением (см. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57)

,

где IMAX - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панели СБ перпендикулярно солнечным лучам;

α - угол между направлением на Солнце и нормалью к рабочей поверхности СБ.

то , и с учетом того, что угол между направлением на Солнце и нормалью к рабочей поверхности СБ α=ε-ρ, выходную мощность СБ, соответствующую воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, определяют по соотношению .

Например, при значениях угла между направлением на Солнце и нормалью к рабочей поверхности СБ α=ε-ρ=30° (cos(ε-ρ)=0,866) и α=ε-ρ=60° (cos(ε-ρ)=0,5) значение выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, равно, соответственно, и .

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение позволяет минимизировать (исключить) влияние уходящего от Земли излучения при определении выходной мощности и оценке текущей эффективности СБ путем минимизации (исключения) поступления уходящего от подстилающей земной поверхности излучения в зону чувствительности тыльной поверхности СБ при обеспечении необходимого уровня освещенности Солнцем рабочей поверхности СБ.

Данный технический результат достигается путем выставки СБ КА в специальные положения, при которых излучение от видимой с КА освещенной поверхности Земли поступает на СБ вне зон чувствительности рабочей и тыльной поверхностей СБ. Этим минимизируется (исключается) недостаточно точно прогнозируемое увеличение текущих значений тока от СБ, получаемое за счет поступления на СБ уходящего от Земли излучения, и, следовательно, увеличивается точность определения искомой выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, и получаемых на ее основе оценок текущей эффективности СБ.

Указанный технический эффект достигается за счет измерения предложенных орбитальных параметров, проверки выполнения связанных с ними условий, выполнения в моменты удовлетворения проверяемых условий разворота СБ относительно Солнца и Земли в предложенные положения, измерения напряжения и тока в предложенной ориентации СБ и определения выходной мощности СБ, соответствующей воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, по измеренных параметрам и по предложенному соотношению.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫХОДНОЙ МОЩНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 261-270 из 379.
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
Показаны записи 261-270 из 353.
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.ba56

Устройство укладки гибкого протяженного по длине элемента в космических условиях и способ его эксплуатации

Изобретение относится к космической технике, в частности к оборудованию по обеспечению работ в космических условиях, а также может быть использовано в наземных условиях и при проведении подводно-технических работ. Предлагается устройство, содержащее несущую структуру в виде двух пластин (1),...
Тип: Изобретение
Номер охранного документа: 0002615466
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c4fe

Центробежное рабочее колесо

Изобретение относится к насосостроению и может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей (1) ведущий диск (2), покрывной диск...
Тип: Изобретение
Номер охранного документа: 0002618372
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c590

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе электродвигатель, размещенные на его валу колеса. Снаружи электродвигателя установлен...
Тип: Изобретение
Номер охранного документа: 0002618377
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
+ добавить свой РИД