×
25.08.2017
217.015.d24f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ СГОРАНИЯ УГЛЕВОДОРОДНЫХ ТОПЛИВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплофизическим измерениям, в частности к способам определения энергии сгорания газообразных и жидких топлив, преимущественно реактивных топлив, и может быть использовано в области научных исследований при разработке новых композиций топлив и перспективных высокоскоростных двигателей. Сущность изобретения заключается в определении энергии сгорания топлив с использованием лабораторной установки перепускного типа при этом учитывается количество и состав продуктов сгорания - коэффициент адиабаты k, образовавшихся при сгорании в условиях, приближенных к условиям эксплуатации двигателя, масса поступившего топлива m в реакционную камеру, которая напрямую зависит от взятой массы m исследуемого топлива, и прирост давления в реакционной камере при сгорании ТВС. Технический результат - повышение достоверности полученных результатов за счет приближения условий испытаний к условиям эксплуатации воздушно-реактивного двигателя на ТВС заданного состава. 2 ил.

Изобретение относится к теплофизическим измерениям, в частности к способам определения энергии сгорания газообразных и жидких топлив, преимущественно реактивных топлив, и может быть использовано в области научных исследований при разработке новых композиций топлив

Создание перспективных сверхзвуковых и гиперзвуковых летательных аппаратов с новыми высокоскоростными двигателями, эффективность работы которых непосредственно связана с эффективностью (полнотой) сгорания применяемых топлив, которая, в свою очередь, характеризуется величиной выделившейся тепловой энергии от сгорания топлив, требует достоверной оценки энергии сгорания, условия испытаний которых должны быть приближены к реальным условиям эксплуатации двигателей.

Энергия сгорания топлива - тепловая энергия, выделившаяся в результате сгорания топливовоздушной смеси (ТВС) заданного состава в конкретных условиях камеры сгорания двигателя.

Достоверность ее определения находится под постоянным вниманием ученых и конструкторов, разрабатывающих воздушно-реактивные двигатели (ВРД) (1 - Реактивные двигатели под ред. О.Е. Ланкастера, М.: Военное издательство Министерства обороны СССР, 1962, 246 с.; 2 - Паушкин Я.М. Химия реактивных топлив, М.: изд. АН СССР, 1962, 436 с.; 3 - Е.А. Бонни, М.Д. Цукров, К.У. Бессерер. Аэродинамика. Теория реактивных двигателей. Конструкции и практика проектирования под ред. В.Т. Власова. М.: Военное издательство Министерства обороны СССР, 1959, 720 с.).

Перед авторами стояла задача разработать способ определения энергии сгорания, отвечающий следующим требованиям:

- оперативность определения энергии сгорания;

- малозатратность по отношению к образцу и материалам;

- приближение условий испытаний к реальным условиям эксплуатации в ВРД (температура ТВС от 200°С до 400°С, давление в камере сгорания - 0,05-0,2 МПа);

- расширение номенклатурного ряда исследуемых топлив, в том числе с высококипящими углеводородами.

При просмотре источников патентной и научно-технической информации было выявлено, что методы измерения энергии сгорания топлив подразделяются на стендовые и лабораторные.

Стендовые методы осуществляются на полноразмерных двигателях обычно в аэродинамических трубах (1 - с. 312-338; 2 - с. 391-399). Это очень трудоемкое и затратное исследование, поэтому определение характеристик сгорания топлив и энергии сгорания в том числе, проводятся, как правило, лабораторными методами.

Лабораторные методы позволяют:

работать с малыми количествами горючего и индивидуальными соединениями;

варьировать факторами, определяющими условия горения и с высокой экономичностью и оперативностью получать результаты исследования (2 - с. 162).

В то же время существующие лабораторные способы измерения энергии сгорания топлив при использовании для ВРД имеют недостатки:

- сгорание исследуемого горючего происходит при атмосферном давлении в турбулентном потоке, что не позволяет моделировать условия реального применения ВРД;

- исходная температура газового потока, подаваемого в камеру сгорания, ограничена интервалом 20°С - 60°С, в то время как для больших высот и сверхзвуковых скоростей интервалы температур составляют от минус 50°С до 200°С;

- измерения ограничены только низкокипящими топливами (ТС-1).

Известен способ измерения энергии сгорания топлива с применением калориметрического устройства, сущность которого заключается в сжигании топлива в предварительно отвакуумированном замкнутом объеме с последующим измерением подъема температуры. При калориметрическом способе определения энергии сгорания температура оболочки калориметрического сосуда поддерживается постоянной, а температура реакционного сосуда изменяется под действием теплоты реакции и энергия сгорания рассчитывается по формуле

где ΔНсг - энергия сгорания топлива, Дж; С - энергетический эквивалент калориметра, Дж/К; ΔT - прирост температуры реакционного сосуда, К (4 - DE 3720340(С1), 1988.09.22).

Известен способ измерения энергии сгорания топлива и других органических соединений Сущность изобретения заключается в использовании фазового перехода жидкость-газ и измерении количества тепла, затраченного на этот фазовый переход. Фазовый переход осуществляют в изотермических условиях в термосифоне или тепловой трубе с элементами Пельтье, расположенными в зоне конденсации, подавая электрическую энергию на элементы Пельтье, поддерживают давление пара рабочей жидкости постоянным. Величину энергии сгорания определяют по формуле

где Q - энергия сгорания;

η - коэффициент Пельтье данной батареи теплоэлементов при температуре кипения жидкости;

i - сила тока, подаваемая на элементы Пельтье в период сжигания образца;

tн и tк - момент включения и выключения электрического тока;

Qж - энергия, подаваемая на элементы Пельтье при холостом ходе тепловой трубы или термосифона за тот же период времени (5 - RU патент №2085924 G01N 25/22).

Недостатком этих способов является отсутствие возможности реализовать: высокую исходную температуру 200°С - 400°С, широкий диапазон давления 0,05-0,2 МПа, широкий диапазон температуры кипения топлив.

Наиболее близким по технической сущности и взятым за прототип является способ определения энергии сгорания топлива, включающий сжигание исследуемой топливовоздушной смеси (ТВС) в адиабатическом режиме в замкнутом объеме при регулировании и регистрации температуры, давления, состава реакционной смеси и продуктов сгорания. Энергию сгорания рассчитывают по термодинамической формуле, в основе которой лежит фиксация прироста давления в реакционном сосуде заданного объема при сгорании топлива

где ΔНсг - энергия сгорания топлива, Дж; ΔP - подъем давления в реакционном сосуде, Па; k - показатель адиабаты продуктов сгорания; V - объем реакционного сосуда, м3. (4 - Техническая термодинамика под ред. Крутова В.И., М.: Высшая школа, 1991, с. 108-110 - прототип).

Основными недостатками данного способа являются:

- отсутствие учета массы и свойств конкретного топлива (от свойств топлива зависит количество топлива, необходимого для приготовления ТВС заданного состава);

- низкая достоверность результатов, обусловленная отсутствием конкретного значения коэффициента адиабаты k продуктов сгорания исследуемого топлива в конкретных условиях сгорания.

Технический результат изобретения - повышение достоверности полученных результатов за счет приближения условий испытаний к условиям эксплуатации двигателя на ТВС заданного состава.

Указанный технический результат достигается тем, что способ определения энергии сгорания углеводородных топлив, включающий подготовку ТВС заданного состава, сжигание в реакционной камере постоянного объема, измерение подъема давления в реакционной камере, определение состава продуктов сгорания и расчет энергии сгорания по математической зависимости, согласно изобретению дополнительно замеряют массу введенного в смеситель топлива, исходное давление в смесителе, топливовоздушную смесь заданного состава нагревают в смесителе до температуры ниже температуры ее самовоспламенения, после чего перепускают ТВС из смесителя в являющуюся конструктивным элементом установки перепускного типа реакционную камеру, замеряют конечное давление в смесителе после перепуска, и по завершении процесса сгорания в реакционной камере величину энергии сгорания углеводородного топлива рассчитывают по следующей зависимости:

где ΔНсг - энергия сгорания анализируемого топлива, Дж;

ΔР - величина подъема давления в реакционной камере при сжигании от начального до максимального, Па;

где Pмах - максимальное давление в реакционной камере при сгорании ТВС, Па;

Рн - начальное давление в реакционной камере после поступления ТВС, Па;

Vрк - объем реакционной камеры, м3 (const);

k - коэффициент адиабаты продуктов сгорания анализируемого топлива;

mгр - масса топлива, поступившего в реакционную камеру, рассчитываемая по формуле

где mг - количество топлива, введенного в смеситель, кг;

Рисх и Ркон - исходное и конечное давления в смесителе (до и после перепуска в реакционную камеру), Па.

На фиг. 1 представлена блок-схема лабораторной установки постоянного объема перепускного типа «Пламя», реализующая способ определения энергии сгорания топлив.

Фиг. 2 - графическая зависимость изменения давления в реакционной камере за временя сгорания, где Рн - начальное давление в реакционной камере после поступления ТВС, Па; Рмах - максимальное давление в реакционной камере при сгорании поступившей массы топлива, Па.

Реакционная камера является конструктивным элементом лабораторной установки постоянного объема перепускного типа «Пламя» (5 - Петрухин Н.В., Гришин Н.Н., Сергеев С.М., Труды 25 ГосНИИ МО РФ, М.: «Перо», вып. 57, 2016, с. 110-119), которая состоит из смесителя 1, на выходе из которого (в перепускном канале без поз.) установлен электромагнитный клапан 2.

Смеситель 1 имеет канал 3 для ввода топлива и канал (без поз.) с вентилем 4 подачи воздуха. Смеситель 1 снабжен средством 5 подогрева ТВС и измерителем 6 давления (замеряет Рисх и Ркон) и температуры 7. Смеситель 1 перепускным каналом (без поз.), в котором установлен электромагнитный клапан 2, соединен с реакционной камерой 8.

В реакционной камере 8 температура контролируется термопарой 9, а давление контролируется датчиком давления 10. Датчики 6, 9 и 10 подключены к блоку 11 регистрации и обработки результатов испытания.

Для оценки продуктов сгорания пробу из реакционной камеры 8 отбирают через вентиль 12, и после получения числового значения k - коэффициента адиабаты продуктов сгорания конкретной массы топлива mгр, поступившей в реакционную камеру, вводят это числовое значение в блок 11. Блок 11 выполнен в виде программно-вычислительного комплекса и реализует различные программы, в частности определения характеристик горения высококипящих углеводородов (свидетельство №2015616579 от 15.06.2015 г.).

Способ осуществляется следующим образом.

В смеситель 1 с помощью шприца через канал 3 вводят заданное количество (массу mг) исследуемого топлива и подают в заданном соотношении воздух, открыв вентиль 4. Замеряют исходное давление Рисх полученной ТВС, которую посредством нагревателя 5 доводят до температуры 200°С±2°С (на 20°С - 40°С ниже температуры самовоспламенения ТВС заданного состава - справочные данные). Подогретую ТВС через электромагнитный клапан 2 перепускают из смесителя 1 в реакционную камеру 8 постоянного объема Vрк. По окончании перепуска регистрируют давление Ркон в смесителе 1 и начальное давление Рн в реакционной камере 8. После воспламенения ТВС в реакционной камере 8 (как в прототипе - от нагретой стенки или поджига с помощью искрового разряда) происходит горение, в процессе которого давление внутри реакционной камеры 8 растет и достигает максимального значения. Максимальное давление Рмах, образовавшиеся в результате сгорания ТВС регистрируется с помощью быстродействующего датчика 10 и отражается в виде осциллограммы - зависимость (фиг. 2) изменения давления от времени за период сгорания.

По окончании сгорания топливной смеси через вентиль 12 отбирают пробу из реакционной камеры 8 и хроматографическим методом определяют состав продуктов сгорания. По составу продуктов сгорания вычисляют коэффициент адиабаты k, пользуясь справочными данными (6 - Викторов М.М. Методы вычисления физико-химических величин и прикладные расчеты, Л.: Химия, 1997, с. 207-227). Значение этого коэффициента вводят в блок 11 регистрации и обработки результатов испытания.

В результате непосредственно измеряемыми величинами в предлагаемом способе являются исходное и конечное Ркон давления в смесителе 1, начальное Рн и максимальное Рмах давления в реакционной камере 8, температуры Тсм в смесителе 1 и Трк в реакционной камере 8.

Сигналы от датчиков 6, 7, 9, 10 поступают в блок 11, куда введены задаваемые значения показателей Тсм, Vрк - const, mг, Трк и k.

По значениям Рисх, Ркон и mг, поступившим в блок 11 рассчитывается количество топлива mгр, поступившего в реакционную камеру, по формуле

,

величина которого используется в расчете ΔНсг - энергии сгорания топлива.

Расчет энергии сгорания топлива выполняется в блоке 11 по полученной формуле

где ΔНсг - энергия сгорания анализируемого топлива, Дж/кг;

ΔР - величина подъема давления в реакционной камере от начального до максимального, Па;

Vрк - объем реакционной камеры, м3 (const);

mгр - масса топлива поступившего в реакционную камеру, кг.

Заявленным способом были проанализированы энергии сгорания углеводородных топлив: ТС-1, Т-1, Т-6 и нафтила, а также оценено влияние состав ТВС на значение энергии сгорания топлив.

Пример 1. Результаты определения энергии сгорания топлива для различных марок углеводородных топлив и различных составов ТВС представлены в таблицах 1 и 2.

Как видно из результатов испытаний заявленным способом, представленных в таблицах, определенная энергия сгорания углеводородных топлив на базе лабораторной установки постоянного объема перепускного типа «Пламя» позволяет сравнить эффективность сгорания различных топлив и составов ТВС в одних и тех же условиях и определять наиболее благоприятные с точки зрения сгорания режимы работы реактивного двигателя на конкретном углеводородном топливе.

Таким образом, сущность изобретения заключается в том, что в отличие от прототипа при оценке энергии сгорания учитывается совокупность продуктов сгорания k, образовавшихся при сгорании в конкретных условиях, и масса поступившего топлива mгр в реакционную камеру, которая напрямую зависит от взятой массы mг исследуемого топлива.

Применение изобретения позволит повысить достоверность полученных результатов за счет приближения условий испытаний к условиям эксплуатации воздушно-реактивного двигателя на ТВС заданного состава.


СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ СГОРАНИЯ УГЛЕВОДОРОДНЫХ ТОПЛИВ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ СГОРАНИЯ УГЛЕВОДОРОДНЫХ ТОПЛИВ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ СГОРАНИЯ УГЛЕВОДОРОДНЫХ ТОПЛИВ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ СГОРАНИЯ УГЛЕВОДОРОДНЫХ ТОПЛИВ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 110.
29.01.2020
№220.017.fb10

Автоматизированная установка для определения энерго-баллистических характеристик жидких углеводородных горючих

Изобретение относится к области испытаний материалов, в частности жидких углеводородных горючих для исследования применимости жидких углеводородных горючих с требуемыми характеристиками в заданных условиях. Установка содержит установленную с возможностью колебаний обогреваемую рабочую камеру в...
Тип: Изобретение
Номер охранного документа: 0002712227
Дата охранного документа: 27.01.2020
29.01.2020
№220.017.fb1f

Способ оценки стабильности гидравлических жидкостей для авиационной техники

Изобретение относится к области испытаний жидкостей для гидравлических систем авиационной техники, в частности для оценки стабильности гидравлических жидкостей. Способ включает заполнение рабочей жидкостью герметичной термостатируемой емкости, испытание рабочей жидкости в заданных условиях в...
Тип: Изобретение
Номер охранного документа: 0002712230
Дата охранного документа: 27.01.2020
15.04.2020
№220.018.14c7

Автоматизированная установка контроля технического состояния специального технологического оборудования автотопливозаправщиков

Изобретение относится к испытательному оборудованию контроля технического состояния специального технологического оборудования автотопливозаправщиков. Установка содержит единый переносной корпус, выполненный в виде трансформируемого в столешницу (1) модуля, на которой жестко закреплен отрезок...
Тип: Изобретение
Номер охранного документа: 0002718713
Дата охранного документа: 14.04.2020
09.06.2020
№220.018.259c

Миниаспиратор для определения различных аналитов в воздухе

Изобретение относится к системам контроля воздуха с использованием химических способов, преимущественно с использованием индикаторных трубок, заполненных химическим индикатором, размещаемых в едином с побудителем расхода воздуха корпусе, и может быть использовано при исследованиях воздуха на...
Тип: Изобретение
Номер охранного документа: 0002723026
Дата охранного документа: 08.06.2020
09.06.2020
№220.018.25c4

Способ оценки склонности дизельных топлив к образованию отложений в инжекторах систем впрыска дизельных двигателей

Изобретение относится к методам оценки эксплуатационных свойств дизельных топлив, в частности к способу оценки склонности дизельных топлив к образованию отложений в инжекторах систем впрыска дизельных двигателей, включающему прокачку испытываемого топлива через нагретый до заданной температуры...
Тип: Изобретение
Номер охранного документа: 0002723099
Дата охранного документа: 08.06.2020
21.06.2020
№220.018.286f

Способ определения содержания противоизносных присадок на основе жирных кислот в дизельных топливах

Изобретение относится к области контроля качества дизельных топлив, преимущественно для определения противоизносных присадок на основе жирных кислот. Способ определения количества противоизносной присадки на основе жирных кислот в дизельных топливах включает отбор пробы, ИК-спектрометрирование...
Тип: Изобретение
Номер охранного документа: 0002723974
Дата охранного документа: 18.06.2020
24.06.2020
№220.018.2a27

Фильтр-смеситель двухкомпонентного топлива

Изобретение относится к средствам очистки с одновременным смешиванием в щелевых фильтрующих элементах и может быть использовано в системе питания автотракторных двигателей. Фильтр-смеситель содержит корпус 1 с входными каналами 2, 3, стакан 4. Через центр днища 5 стакана 4 пропущена пустотелая...
Тип: Изобретение
Номер охранного документа: 0002724239
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b5d

Способ определения склонности моторных масел для дизельных двигателей к образованию низкотемпературных отложений

Изобретение относится к способу определения склонности моторных масел для дизельных двигателей к образованию низкотемпературных отложений, включающему цикличную работу двигателя с жидкостной системой охлаждения в течение заданного отрезка времени, подачу в картер двигателя выхлопных газов и...
Тип: Изобретение
Номер охранного документа: 0002724330
Дата охранного документа: 23.06.2020
04.07.2020
№220.018.2e9b

Устройство для заделки пробоин в стенках заполненных жидкостью жестких полых изделий и корпусах судов

Изобретение относится к средствам заделки пробоин в стенках заполненных жидкостью жестких полых изделий, в частности резервуарах, автомобильных и железнодорожных цистернах, заполненных жидкостью, и может быть использовано для временной заделки пробоин в корпусах судов. Устройство состоит из...
Тип: Изобретение
Номер охранного документа: 0002725553
Дата охранного документа: 02.07.2020
21.07.2020
№220.018.34f1

Передвижной технологический комплекс для устранения аварий на наземном сборно-разборном нефтепродуктопроводе с соединением "раструб"

Изобретение относится к передвижным ремонтным мастерским, предназначенным для диагностики и ремонта наземного металлического магистрального сборно-разборного трубопровода с соединением «Раструб», и может быть использовано в ремонтных структурах при аварийных ситуациях, преимущественно на...
Тип: Изобретение
Номер охранного документа: 0002726986
Дата охранного документа: 17.07.2020
Показаны записи 71-74 из 74.
18.01.2019
№219.016.b17a

Индикаторная трубка для определения 1,1-диметилгидразина в воздухе

Изобретение относится к аналитической химии, а именно к химическим индикаторам на твердофазных кремнеземных носителях, и может быть использовано для экспрессного определения предельно допустимых и опасных концентраций 1,1-диметилгидразина в воздухе. Индикаторная трубка состоит из прозрачной...
Тип: Изобретение
Номер охранного документа: 0002677329
Дата охранного документа: 16.01.2019
03.03.2019
№219.016.d274

Способ изготовления рельсовых плетей и комплекс для осуществления способа

Изобретение может быть использовано для изготовления сварных рельсовых плетей и их последующей термообработки. Способ изготовления и термообработки рельсовых плетей содержит изготовление рельсовой плети, включающее последовательно сварку встык рельсов, съем грата и шлифовку контура сварных...
Тип: Изобретение
Номер охранного документа: 0002681046
Дата охранного документа: 01.03.2019
29.01.2020
№220.017.fb10

Автоматизированная установка для определения энерго-баллистических характеристик жидких углеводородных горючих

Изобретение относится к области испытаний материалов, в частности жидких углеводородных горючих для исследования применимости жидких углеводородных горючих с требуемыми характеристиками в заданных условиях. Установка содержит установленную с возможностью колебаний обогреваемую рабочую камеру в...
Тип: Изобретение
Номер охранного документа: 0002712227
Дата охранного документа: 27.01.2020
06.06.2023
№223.018.7947

Способ передачи данных в сетях связи с нестабильными характеристиками элементов

Изобретение относится к области передачи данных в системах связи. Техническим результатом является повышение вероятности передачи данных на информационных направлениях при их передаче в сетях связи с нестабильными характеристиками элементов. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002747092
Дата охранного документа: 26.04.2021
+ добавить свой РИД