×
25.08.2017
217.015.d1d8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии. При перемешивании в суспензию вводят алмазный порошок. Воздействуют на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаляют из суспензии алмазный порошок. Далее выделяют мелкодисперсную фракцию металлического порошка из суспензии. Обеспечивается повышение доли выхода мелкодисперсной фракции порошка, а также диспергирование немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации. 4 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к способам получения мелкодисперсных порошков и может быть использовано в порошковой металлургии, ядерной энергетике, аддитивных технологиях.

В настоящее время разработано и практикуется более двух десятков способов производства мелкодисперсных материалов, основными из которых являются механическое или ультразвуковое диспергирование, газофазный синтез, использование низкотемпературной плазмы, электрический взрыв проводников, катодное распыление и т.д. [Ультрадисперсные и наноразмерные порошки: создание, строение, производство и применение / под ред. акад. В.М. Бузника. - Томск: Изд-во НТЛ, 2009. - 192 с; Формирование структуры и свойств пористых порошковых материалов / Витязь П.А., Капцевич В.М., Косторнов А.Г. и др. - М.: Металлургия. 1993. - 240 с]. Однако их всех отличает различная трудозатратность, стоимость, эффективность, а порой и возможность в получении мелкодисперсных порошков с различными физико-химическими свойствами.

Одним из наиболее простых и доступных способов получения мелкодисперсных порошков является механическое диспергирование. Устройством для измельчения сыпучих материалов путем механического диспергирования является шаровая мельница [Авторское свидетельство СССР №1784274, B02C 15/08, опубл. 30.12.1992]. Недостатками механических способов диспергирования являются большой разброс получаемых частиц по размерам и загрязнение продуктов конструкционными материалами («натир»).

В технологии диспергирования материалов широко применяют низкочастотные (20 кГц ÷ 1 МГц) ультразвуковые колебания в режиме кавитации. Эффективность воздействия ультразвука определяется интенсивностью излучения, растущей пропорционально плотности среды и скорости звука в квадратичной зависимости от амплитуды и частоты колебаний, которая характеризует удельную плотность вводимой энергии. Измельчение твердых частиц происходит под действием возникающих при схлопывании пузырьков сферических ударных волн [Неорганические наноматериалы: учебное пособие / Раков Э.Г. - М.: БИНОМ. Лаборатория знаний, 2013. - 477 с.].

Наиболее близким по технической сущности к заявляемому способу является способ получения мелкодисперсного ферритового порошка, который включает механическое диспергирование ферритового материала, перемешивание смеси полидисперсного ферритового порошка с химически инертной к нему жидкостью до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии [Патент РФ №2213620 С2, В03В 5/02, В03В 5/68, В03С 1/30, опубл. 10.10.2003]. В сосуде, выполненном из немагнитного материала, на осадочную часть суспензии воздействуют ультразвуковыми колебаниями и выделяют мелкодисперсную фракцию порошка. Плотность потока мощности ультразвуковых колебаний выбирают в пределах 1,1-1,5 плотности потока мощности, соответствующей кавитационному порогу для обрабатываемой суспензии, высоту столба суспензии выбирают в пределах (0,4-2,0)/α, где α - коэффициент затухания ультразвуковых колебаний в суспензии. Для выделения мелкодисперсной фракции ферритового порошка используют верхний слой суспензии глубиной не более четверти длины волны ультразвуковых колебаний в суспензии. На суспензию дополнительно могут воздействовать неоднородным постоянным или переменным магнитным полем, градиент напряженности которого направлен противоположно гравитационному полю Земли.

Недостатком указанного способа является то, что из всего объема обрабатываемого полидисперсного порошка можно выделить лишь первоначально содержащуюся мелкодисперсную фракцию. Кроме того, известный способ непригоден при диспергировании немагнитопроводящих порошков. Очевидно, что эффективность указанного способа становится еще меньше при попытке диспергирования пластичных порошков, склонных к сегрегации.

Задача и достигаемый при использовании изобретения технический результат - повышение доли выхода мелкодисперсной фракции порошка при обработке смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой ультразвуковыми колебаниями в режиме кавитации, а также возможность диспергирования немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации.

Для решения поставленной задачи предложен способ получения мелкодисперсного металлического порошка, включающий механическое диспергирование металлического материала, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии, в котором согласно изобретению при перемешивании в суспензию вводят алмазный порошок, который удаляют перед выделением мелкодисперсной фракции.

Алмазный порошок вводят в суспензию в количестве 5÷15% от объема суспензии.

Удаление алмазного порошка из суспензии осуществляют путем расслоения суспензии в химически инертной к полидисперсному металлическому порошку жидкой среде.

Объем жидкой среды к объему полидисперсного металлического порошка выбирают в отношении (5÷7):1.

Отношение фракции полидисперсного металлического порошка к фракции алмазного порошка выбирают в отношении (5÷10):1.

Вышеприведенные соотношения и пропорции были определены экспериментально и являются оптимальными с точки зрения достижения технического результата. Они могут меняться в зависимости от способа кавитационного воздействия (конструктивного исполнения ультразвукового диспергатора, плотности потока мощности ультразвуковых колебаний и т.д.) и уточняться для каждого отдельного случая опытным путем.

В отличие от способа-прототипа, заявленный способ позволяет осуществить эффективное диспергирование немагнитопроводящих и пластичных полидисперсных металлических порошков, склонных к сегрегации.

Сущность заявленного изобретения иллюстрируется фигурами графических изображений и поясняется нижеследующим примером конкретного осуществления.

На фиг. 1 представлен снимок (увеличением 500 крат) сканированных частиц исходного полидисперсного металлического порошка стали 12X18H10T.

На фиг. 2 представлена гистограмма фракционного состава исходного полидисперсного металлического порошка стали 12X18H10T.

На фиг. 3 представлен снимок (увеличением 50.000 крат) сканированных частиц алмазного порошка.

На фиг. 4 представлен снимок (увеличением 500 крат) сканированных частиц выделенного из суспензии металлического порошка стали 12X18H10T, диспергированного в соответствии с заявленным способом.

На фиг. 5 представлена гистограмма фракционного состава выделенного из суспензии металлического порошка стали 12X18H10T, диспергированного в соответствии с заявленным способом.

На фиг. 6 представлен снимок (увеличением 50.000 крат) сканированных частиц алмазного порошка, удаленного из суспензии.

Пример осуществления способа

Для получения мелкодисперсного металлического порошка фракции 5÷50 мкм в качестве исходного материала использовали полидисперсный металлический порошок стали 12X18H10T фракции 10÷100 мкм (см. фиг. 1), склонный к сегрегации. Доля мелкодисперсного металлического порошка фракции 10÷50 мкм в исходном материале составляла порядка 20% (см. фиг. 2). Проводили механическое диспергирование полидисперсного металлического порошка массой 200 г (29,3 см3) в шаровой мельнице. Перемешивали диспергированный полидисперсный металлический порошок с жидкой средой, в качестве которой взяли 200 мл дистиллированной воды, в отношении 1,0:6,8 до образования суспензии. При перемешивании вводили алмазный порошок дисперсностью 1÷10 мкм (см. фиг. 3) в суспензию в количестве 30 г (13,3 см3), что составило 5,8% от объема суспензии. Воздействовали на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаление алмазного порошка из суспензии осуществляли путем расслоения суспензии в дистиллированной воде. Выделение мелкодисперсной фракции полученного металлического порошка с дисперсностью частиц 5÷50 мкм (см. фиг. 4) из суспензии проводили путем испарения дистиллированной воды. Доля мелкодисперсного металлического порошка фракции 5÷50 мкм в выделенном из суспензии металлическом порошке стали 12X18H10T, диспергированного в соответствии с заявленным способом, составила порядка 75% (см. фиг. 5). Отработанная фракция алмазного порошка имеет субмикронный размер (см. фиг. 6), что позволяет произвести легкую сепарацию между диспергированным металлическим порошком и алмазным порошком.

Как видно из примера и снимков, представленных на фиг. 1-6, доля выхода мелкодисперсной фракции порошка при диспергировании существенно увеличилась, а также стало возможным диспергирование немагнитопроводящих и пластичных полидисперсных металлических порошков, склонных к сегрегации.


СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА
Источник поступления информации: Роспатент

Показаны записи 71-79 из 79.
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.62db

Способ определения кислородного коэффициента в диоксиде урана и устройство для его осуществления

Изобретение относится к области изготовления ядерного топлива в виде диоксида урана и может быть использовано для определения атомного кислородного коэффициента в диоксиде урана. Способ включает заполнение измерительного цилиндра 1% водным раствором хлористого натрия. Высчитывают массу навески...
Тип: Изобретение
Номер охранного документа: 0002688141
Дата охранного документа: 20.05.2019
04.06.2019
№219.017.736c

Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Способ включает напыление путем электронно-лучевого испарения материала покрытия в вакууме и осаждения паров на поверхности подложки при вращении подложек механизмом с планетарной передачей. Осуществляют прямой оптический контроль путем измерения спектра пропускания покрытия на каждом обороте...
Тип: Изобретение
Номер охранного документа: 0002690232
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7438

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690492
Дата охранного документа: 04.06.2019
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
12.04.2023
№223.018.45cb

Способ наведения лазерных пучков и устройство для его осуществления

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают...
Тип: Изобретение
Номер охранного документа: 0002744040
Дата охранного документа: 02.03.2021
Показаны записи 61-66 из 66.
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
01.09.2018
№218.016.8216

Способ получения наночастиц оксида алюминия

Изобретение относится к неорганической химии и нанотехнологиям и может быть использовано для формирования нанорельефа в микроканале, в качестве гидрофильного покрытия, подложки для катализаторов. Для получения ультрадисперсного порошка оксида алюминия растворяют соль алюминия в дистиллированной...
Тип: Изобретение
Номер охранного документа: 0002665524
Дата охранного документа: 30.08.2018
24.11.2018
№218.016.a0ec

Частотомер

Изобретение относится к области радиотехники, в частности к средствам оценивания статистических характеристик обнаружения радиосигналов, и может быть использовано для измерения частоты появления сигналов радиоэлектронных средств, а также проведения экспериментальных исследований. Технический...
Тип: Изобретение
Номер охранного документа: 0002673240
Дата охранного документа: 23.11.2018
24.07.2020
№220.018.3735

Способ формирования пористого покрытия из наночастиц

Способ относится к области нанотехнологии и может быть использован при изготовлении изделий, содержащих теплообменные поверхности с микро- и нанорельефом с целью интенсификации теплообмена, уменьшения гидравлического сопротивления и улучшения капиллярных свойств поверхности. Способ формирования...
Тип: Изобретение
Номер охранного документа: 0002727406
Дата охранного документа: 21.07.2020
17.06.2023
№223.018.7e89

Высокотемпературный плотный композитный материал ядерного топлива и способ его получения

Группа изобретений относится к материалу ядерного топлива и представляет собой высокотемпературный плотный композитный материал ядерного топлива и способ его получения. Высокотемпературный плотный композитный материал ядерного топлива содержит керамическую, инертную к облучению матрицу, в...
Тип: Изобретение
Номер охранного документа: 0002770890
Дата охранного документа: 25.04.2022
+ добавить свой РИД