×
25.08.2017
217.015.d1d8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии. При перемешивании в суспензию вводят алмазный порошок. Воздействуют на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаляют из суспензии алмазный порошок. Далее выделяют мелкодисперсную фракцию металлического порошка из суспензии. Обеспечивается повышение доли выхода мелкодисперсной фракции порошка, а также диспергирование немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации. 4 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к способам получения мелкодисперсных порошков и может быть использовано в порошковой металлургии, ядерной энергетике, аддитивных технологиях.

В настоящее время разработано и практикуется более двух десятков способов производства мелкодисперсных материалов, основными из которых являются механическое или ультразвуковое диспергирование, газофазный синтез, использование низкотемпературной плазмы, электрический взрыв проводников, катодное распыление и т.д. [Ультрадисперсные и наноразмерные порошки: создание, строение, производство и применение / под ред. акад. В.М. Бузника. - Томск: Изд-во НТЛ, 2009. - 192 с; Формирование структуры и свойств пористых порошковых материалов / Витязь П.А., Капцевич В.М., Косторнов А.Г. и др. - М.: Металлургия. 1993. - 240 с]. Однако их всех отличает различная трудозатратность, стоимость, эффективность, а порой и возможность в получении мелкодисперсных порошков с различными физико-химическими свойствами.

Одним из наиболее простых и доступных способов получения мелкодисперсных порошков является механическое диспергирование. Устройством для измельчения сыпучих материалов путем механического диспергирования является шаровая мельница [Авторское свидетельство СССР №1784274, B02C 15/08, опубл. 30.12.1992]. Недостатками механических способов диспергирования являются большой разброс получаемых частиц по размерам и загрязнение продуктов конструкционными материалами («натир»).

В технологии диспергирования материалов широко применяют низкочастотные (20 кГц ÷ 1 МГц) ультразвуковые колебания в режиме кавитации. Эффективность воздействия ультразвука определяется интенсивностью излучения, растущей пропорционально плотности среды и скорости звука в квадратичной зависимости от амплитуды и частоты колебаний, которая характеризует удельную плотность вводимой энергии. Измельчение твердых частиц происходит под действием возникающих при схлопывании пузырьков сферических ударных волн [Неорганические наноматериалы: учебное пособие / Раков Э.Г. - М.: БИНОМ. Лаборатория знаний, 2013. - 477 с.].

Наиболее близким по технической сущности к заявляемому способу является способ получения мелкодисперсного ферритового порошка, который включает механическое диспергирование ферритового материала, перемешивание смеси полидисперсного ферритового порошка с химически инертной к нему жидкостью до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии [Патент РФ №2213620 С2, В03В 5/02, В03В 5/68, В03С 1/30, опубл. 10.10.2003]. В сосуде, выполненном из немагнитного материала, на осадочную часть суспензии воздействуют ультразвуковыми колебаниями и выделяют мелкодисперсную фракцию порошка. Плотность потока мощности ультразвуковых колебаний выбирают в пределах 1,1-1,5 плотности потока мощности, соответствующей кавитационному порогу для обрабатываемой суспензии, высоту столба суспензии выбирают в пределах (0,4-2,0)/α, где α - коэффициент затухания ультразвуковых колебаний в суспензии. Для выделения мелкодисперсной фракции ферритового порошка используют верхний слой суспензии глубиной не более четверти длины волны ультразвуковых колебаний в суспензии. На суспензию дополнительно могут воздействовать неоднородным постоянным или переменным магнитным полем, градиент напряженности которого направлен противоположно гравитационному полю Земли.

Недостатком указанного способа является то, что из всего объема обрабатываемого полидисперсного порошка можно выделить лишь первоначально содержащуюся мелкодисперсную фракцию. Кроме того, известный способ непригоден при диспергировании немагнитопроводящих порошков. Очевидно, что эффективность указанного способа становится еще меньше при попытке диспергирования пластичных порошков, склонных к сегрегации.

Задача и достигаемый при использовании изобретения технический результат - повышение доли выхода мелкодисперсной фракции порошка при обработке смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой ультразвуковыми колебаниями в режиме кавитации, а также возможность диспергирования немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации.

Для решения поставленной задачи предложен способ получения мелкодисперсного металлического порошка, включающий механическое диспергирование металлического материала, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии, воздействие на суспензию ультразвуковыми колебаниями в режиме кавитации и выделение мелкодисперсной фракции металлического порошка из суспензии, в котором согласно изобретению при перемешивании в суспензию вводят алмазный порошок, который удаляют перед выделением мелкодисперсной фракции.

Алмазный порошок вводят в суспензию в количестве 5÷15% от объема суспензии.

Удаление алмазного порошка из суспензии осуществляют путем расслоения суспензии в химически инертной к полидисперсному металлическому порошку жидкой среде.

Объем жидкой среды к объему полидисперсного металлического порошка выбирают в отношении (5÷7):1.

Отношение фракции полидисперсного металлического порошка к фракции алмазного порошка выбирают в отношении (5÷10):1.

Вышеприведенные соотношения и пропорции были определены экспериментально и являются оптимальными с точки зрения достижения технического результата. Они могут меняться в зависимости от способа кавитационного воздействия (конструктивного исполнения ультразвукового диспергатора, плотности потока мощности ультразвуковых колебаний и т.д.) и уточняться для каждого отдельного случая опытным путем.

В отличие от способа-прототипа, заявленный способ позволяет осуществить эффективное диспергирование немагнитопроводящих и пластичных полидисперсных металлических порошков, склонных к сегрегации.

Сущность заявленного изобретения иллюстрируется фигурами графических изображений и поясняется нижеследующим примером конкретного осуществления.

На фиг. 1 представлен снимок (увеличением 500 крат) сканированных частиц исходного полидисперсного металлического порошка стали 12X18H10T.

На фиг. 2 представлена гистограмма фракционного состава исходного полидисперсного металлического порошка стали 12X18H10T.

На фиг. 3 представлен снимок (увеличением 50.000 крат) сканированных частиц алмазного порошка.

На фиг. 4 представлен снимок (увеличением 500 крат) сканированных частиц выделенного из суспензии металлического порошка стали 12X18H10T, диспергированного в соответствии с заявленным способом.

На фиг. 5 представлена гистограмма фракционного состава выделенного из суспензии металлического порошка стали 12X18H10T, диспергированного в соответствии с заявленным способом.

На фиг. 6 представлен снимок (увеличением 50.000 крат) сканированных частиц алмазного порошка, удаленного из суспензии.

Пример осуществления способа

Для получения мелкодисперсного металлического порошка фракции 5÷50 мкм в качестве исходного материала использовали полидисперсный металлический порошок стали 12X18H10T фракции 10÷100 мкм (см. фиг. 1), склонный к сегрегации. Доля мелкодисперсного металлического порошка фракции 10÷50 мкм в исходном материале составляла порядка 20% (см. фиг. 2). Проводили механическое диспергирование полидисперсного металлического порошка массой 200 г (29,3 см3) в шаровой мельнице. Перемешивали диспергированный полидисперсный металлический порошок с жидкой средой, в качестве которой взяли 200 мл дистиллированной воды, в отношении 1,0:6,8 до образования суспензии. При перемешивании вводили алмазный порошок дисперсностью 1÷10 мкм (см. фиг. 3) в суспензию в количестве 30 г (13,3 см3), что составило 5,8% от объема суспензии. Воздействовали на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаление алмазного порошка из суспензии осуществляли путем расслоения суспензии в дистиллированной воде. Выделение мелкодисперсной фракции полученного металлического порошка с дисперсностью частиц 5÷50 мкм (см. фиг. 4) из суспензии проводили путем испарения дистиллированной воды. Доля мелкодисперсного металлического порошка фракции 5÷50 мкм в выделенном из суспензии металлическом порошке стали 12X18H10T, диспергированного в соответствии с заявленным способом, составила порядка 75% (см. фиг. 5). Отработанная фракция алмазного порошка имеет субмикронный размер (см. фиг. 6), что позволяет произвести легкую сепарацию между диспергированным металлическим порошком и алмазным порошком.

Как видно из примера и снимков, представленных на фиг. 1-6, доля выхода мелкодисперсной фракции порошка при диспергировании существенно увеличилась, а также стало возможным диспергирование немагнитопроводящих и пластичных полидисперсных металлических порошков, склонных к сегрегации.


СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО ПОРОШКА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 79.
27.02.2014
№216.012.a769

Способ прессования заготовок керметных стержней

Изобретение относится к способам прессования заготовок керметных стержней тепловыделяющих элементов ядерных реакторов. Заготовки, заплавленные силикатом натрия в цилиндрическом контейнере, выполненном из стали с содержанием углерода (0,1-0,35) мас.%, после образования на поверхности контейнера...
Тип: Изобретение
Номер охранного документа: 0002508572
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b8cc

Способ изготовления газонаполненного тепловыделяющег элемента

Изобретение относится к ядерной энергетике, в частности к способам изготовления газонаполненных тепловыделяющих элементов (твэлов) с топливными сердечниками из нитрида или карбонитрида урана. Способ изготовления твэла включает изготовление «трубы в сборе» путем герметичного соединения оболочки...
Тип: Изобретение
Номер охранного документа: 0002513036
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3f

Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна...
Тип: Изобретение
Номер охранного документа: 0002513663
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cc35

Способ осаждения пироуглерода на топливные частицы

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике. Осуществляют осаждение пироуглерода на топливные частицы путем подачи в зону осаждения смеси углеводорода и инертного газа в течение времени τ,...
Тип: Изобретение
Номер охранного документа: 0002518048
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d187

Способ выращивания монокристаллов методом бестигельной зонной плавки и устройство для его осуществления

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из...
Тип: Изобретение
Номер охранного документа: 0002519410
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d2f1

Способ облучения патологий человеческого организма и устройство для его осуществления (варианты)

Группа изобретений относится к медицинской технике. При осуществлении способа одновременно или последовательно воздействуют на патологию ионизирующим и тепловым излучениями через выходное окно источника излучения, которое размещают вблизи или на поверхности патологии. Поток излучения...
Тип: Изобретение
Номер охранного документа: 0002519772
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.de01

Способ получения диоксида урана

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях. Способ получения диоксида урана заключается в гидрировании металлического урана при температуре 200-220°С,...
Тип: Изобретение
Номер охранного документа: 0002522619
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec4

Способ получения порошков нитрида урана

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при...
Тип: Изобретение
Номер охранного документа: 0002522814
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
Показаны записи 11-20 из 66.
27.02.2014
№216.012.a769

Способ прессования заготовок керметных стержней

Изобретение относится к способам прессования заготовок керметных стержней тепловыделяющих элементов ядерных реакторов. Заготовки, заплавленные силикатом натрия в цилиндрическом контейнере, выполненном из стали с содержанием углерода (0,1-0,35) мас.%, после образования на поверхности контейнера...
Тип: Изобретение
Номер охранного документа: 0002508572
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b8cc

Способ изготовления газонаполненного тепловыделяющег элемента

Изобретение относится к ядерной энергетике, в частности к способам изготовления газонаполненных тепловыделяющих элементов (твэлов) с топливными сердечниками из нитрида или карбонитрида урана. Способ изготовления твэла включает изготовление «трубы в сборе» путем герметичного соединения оболочки...
Тип: Изобретение
Номер охранного документа: 0002513036
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3f

Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна...
Тип: Изобретение
Номер охранного документа: 0002513663
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cc35

Способ осаждения пироуглерода на топливные частицы

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике. Осуществляют осаждение пироуглерода на топливные частицы путем подачи в зону осаждения смеси углеводорода и инертного газа в течение времени τ,...
Тип: Изобретение
Номер охранного документа: 0002518048
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d187

Способ выращивания монокристаллов методом бестигельной зонной плавки и устройство для его осуществления

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из...
Тип: Изобретение
Номер охранного документа: 0002519410
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d2f1

Способ облучения патологий человеческого организма и устройство для его осуществления (варианты)

Группа изобретений относится к медицинской технике. При осуществлении способа одновременно или последовательно воздействуют на патологию ионизирующим и тепловым излучениями через выходное окно источника излучения, которое размещают вблизи или на поверхности патологии. Поток излучения...
Тип: Изобретение
Номер охранного документа: 0002519772
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.de01

Способ получения диоксида урана

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерных технологиях. Способ получения диоксида урана заключается в гидрировании металлического урана при температуре 200-220°С,...
Тип: Изобретение
Номер охранного документа: 0002522619
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec4

Способ получения порошков нитрида урана

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при...
Тип: Изобретение
Номер охранного документа: 0002522814
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
+ добавить свой РИД