×
25.08.2017
217.015.d1ac

Результат интеллектуальной деятельности: Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дистанционного зондирования Земли. Способ радиометрической коррекции изображения от многоэлементного фотоприемника инфракрасного диапазона предусматривает выбор на фотоприёмнике не чувствительных к излучению от объекта съёмки элементов, сравнение сигналов от упомянутых нечувствительных элементов в разный момент времени и коррекцию изображения. Способ позволяет повысить точность принимаемого сигнала.

Предлагаемое изобретение относится к области дистанционного зондирования Земли (ДЗЗ).

Одним из важнейших источников информации при дистанционном зондировании Земли является видеоинформация в тепловой области спектра. Однако, получаемые приборами ДЗЗ исходные изображения помимо полезной информации содержат шумы различной природы. Также изображения могут содержать структурные искажения из-за погрешностей в работе аппаратуры. Следовательно, для улучшения качества данных ДЗЗ необходима коррекция инфракрасных изображений с учётом специфики используемой аппаратуры.

В настоящее время создана аппаратура МСУ-ГС второго поколения для КА «Электро-Л» №2 (далее – МСУ-ГС), предназначенная для оперативного получения изображения облачности и подстилающей поверхности Земли [Андреев Р.В. Разработка программного комплекса тестирования блока обработки сигналов геостационарной сканирующей аппаратуры тепловой области спектра: дис. магистра прикладных математики и физики, М., 2014]. Для формирования изображений в инфракрасных каналах данной аппаратуры используются многоэлементные фотоприёмные устройства.

В тепловых каналах аппаратуры МСУ-ГС имеет место дрейф темновой составляющей сигнала фотоприёмников. Величина этого дрейфа зависит от многих факторов (температуры фотоприёмника, времени с момента начала сеанса, времени с момента начала кадра и других). Кроме того, на изображениях часто присутствуют протяженные импульсные помехи, которые достаточно сложно отфильтровать ввиду особенностей формирования выходного сигнала.

Особенностью оптической схемы инфракрасных каналов аппаратуры МСУ-ГС является уменьшенное (несколько меньше размеров фотоприёмника) световое поле, формируемое объективом в фокальной плоскости. Таким образом, на фотоприёмнике присутствуют элементы, на которые не попадает излучение от объекта съемки (далее – "слепые" элементы). Следовательно, может быть предложен способ обработки сигнала фотоприёмника, который одновременно позволит учесть дрейф темновой составляющей сигнала фотоприёмника и наличие в фотоприёмнике элементов, не получающих излучения от объекта съёмки и, соответственно, позволит повысить качество полученного изображения, по сравнению с известными аналогами. То есть, предложенный способ радиометрической коррекции инфракрасного изображения от многоэлементного фотоприёмника должен обеспечить решение описанной выше задачи по коррекции инфракрасных изображений с учётом особенности формирования выходного сигнала разрабатываемой аппаратурой.

Например, известен способ компенсации неоднородности сигнала фоточувствительных элементов многоэлементного фотоприёмника (патент на изобретения RU2449491, 2012, ИФП СО РАН). При осуществлении данного способа на фотоприёмнике определяют элементы чувствительные и не чувствительные к излучению от объекта съёмки, сравнивают сигналы от упомянутых чувствительных и нечувствительных элементов в различные моменты времени и корректируют полученное изображение в соответствии с зависимостью между значением скорректированного сигнала и сигнала от объекта съёмки, учитывающей изменение сигнала. Однако в RU2449491 опорный сигнал получается за счет временной замены одного оптического элемента другим, что приводит к расфокусировке оптической систем. В свою очередь, предлагаемый способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона позволит корректировать изображение без возможной потери работоспособности фотоприёмника, что обеспечит надёжную эксплуатацию многозонального сканирующего устройства в целом.

Предложенный способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона предусматривает определение на фотоприёмнике элементов чувствительных и нечувствительных к излучению от объекта съёмки и сравнение сигналов от упомянутых чувствительных и нечувствительных элементов в различные моменты времени. Изображение корректируют в соответствии с зависимостью между значением скорректированного сигнала и сигнала от объекта съёмки, учитывающей изменение сигнала. В отличие от указанных выше аналогов, в предложенном способе радиометрической коррекции определяют значение величины QUOTE и выполняют указанную коррекцию изображения в соответствии с зависимостью QUOTE [ QUOTE ]. В данных формулах использованы следующие величины: QUOTE – значение скорректированного сигнала, не содержащего компонент, вызванных дрейфом или импульсными помехами; QUOTE – нормализованный сигнал от объекта съёмки; QUOTE – помеха; QUOTE – изменение сигнала для элементов, нечувствительных к излучению от объекта съёмки, по сравнению с его значением в начале кадра; QUOTE – коэффициент нормализации; L – номер линейного фотоприёмника; m – номер элемента фотоприёмника; QUOTE – оператор объединения отсчётов сигналов от элементов фотоприёмника, путём суммирования нормализованных отсчётов, умноженных на коэффициенты интерполяции.

Следует отметить, что описанная выше процедура коррекции применяется к сигналу, прошедшему процедуру нормализации – устранения неоднородности чувствительности и темновой составляющей сигнала. В большинстве случаев процедуру нормализации также называют радиометрической коррекцией. В силу этого предложенная в данном изобретении процедура радиометрической коррекции является дополнительной к процедуре радиометрической коррекции, называемой в данном изобретении нормализацией.

Радиометрическая коррекция согласно предложенному способу может быть произведена на борту космического аппарата либо при наземной обработке сигнала. Бортовая коррекция значительно проще наземной, так как выходной сигнал в этом случае корректируется уже на этапе нормализации, но требует значительного усложнения алгоритма работы блока обработки сигнала. В связи с этим для аппаратуры МСУ-ГС выбран второй способ – радиометрическая коррекция при наземной обработке. Более подробно процедура коррекции изображений может быть рассмотрена следующим образом.

В видеоинформации тепловых каналов аппаратуры МСУ-ГС передается сигнал QUOTE – сигнал от фотоприёмника, прошедший процедуру нормализации. Обозначим сигнал от элемента фотоприемника как QUOTE , где L – номер линейного фотоприёмника (ЛФПУ), m – номер элемента. Тогда QUOTE , где QUOTE – сигнал от объекта съемки, а QUOTE – помеха. Каждый отсчёт проходит процедуру нормализации: QUOTE , где QUOTE – нормализованный сигнал, QUOTE – сигнал от холодного источника излучения (космос), QUOTE – сигнал от горячего источника излучения (бортового имитатора абсолютно черного тела), A – масштабный коэффициент, С – уровень "холодного" в нормализованном выходном сигнале, QUOTE – коэффициент нормализации. Константы A и C рассчитываются исходя из параметров модели съемки и требований, предъявляемых к аппаратуре, и уточняются в процессе наземной калибровки [Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений – М.: Техносфера, 2010 – 560 с.]. Таким образом: QUOTE , QUOTE – величина сигнала от источника излучения не содержащая помехи. Затем, нормализованные отсчеты от восьми линейных фотоприёмников объединяются между собой в блоке обработки сигналов. Обозначим процедуру объединения отсчётов оператором QUOTE . На выходе данной процедуры информация будет представлена в виде отсчетов от одного виртуального линейного фотоприёмника QUOTE . Процедура объединения отсчётов представляет собой суммирование нормализованных отсчётов, умноженных на заранее известные коэффициенты интерполяции – константы, определяемые из геометрических соотношений, учитывающих топологию фотоприёмника и особенности сканирования, хранящиеся в памяти блока обработки сигналов [Гектин Ю.М., Еремеев В.В., Егошкин Н.А., Зенин В.А., Москатиньев И.В. Нормализация изображений от геостационарной космической системы наблюдения земли. // Цифровая обработка сигналов №3. 2011 – С. 28-31]. Следовательно, оператор QUOTE является линейным и выходной сигнал можно представить в виде: QUOTE .

В случае появления импульсной помехи или дрейфа величина помехи QUOTE зависит только от номера ЛФПУ и не зависит от номера элемента ( QUOTE ). Поскольку "слепые" элементы не чувствительны к входному излучению, то изменение значения сигнала от этих элементов может быть вызвано только помехами или дрейфом. Обозначим изменение сигнала для "слепых" элементов по сравнению с его значением в начале кадра как QUOTE . Если считать, что величина QUOTE включает в себя только дрейф и импульсные помехи, то QUOTE и процедура коррекции выходного сигнала выглядит следующим образом: QUOTE ,

где QUOTE – значение скорректированного сигнала. В результате скорректированный сигнал не содержит в себе компонент, вызванных дрейфом или импульсными помехами. Кроме того, в предложенном способе используют опорный сигнал, полученный от элементов, находящиеся в фокальной плоскости оптической системы, но вне поля зрения объектива, в то время как в RU2449491 опорный сигнал получается за счет временной замены одного оптического элемента другим, что приводит к расфокусировке оптической системы.

Рассмотрим практическую реализацию предложенного способа коррекции на пример аппаратуры МСУ-ГС. Для наземной радиометрической коррекции необходимо передавать величины поправок QUOTE . Так как эти величины зависят только от номера ЛФПУ и от времени, то для каждой строки выходного сигнала необходимо передать восемь соответствующих величин поправок. Поскольку выходной сигнал имеет разрядность десять бит, а величина дрейфа и помехи может быть как положительной, так и отрицательной, то величины поправок вычисляются следующим образом: QUOTE , где QUOTE есть сумма по всем номерам m элементов ЛФПУ, которые считаются "слепыми", QUOTE – колличество "слепых" элементов в выбранном ЛФПУ, а t – номер строки выходного сигнала (всего 3400 строк в одном скане). Всего получают восемь значений поправок QUOTE для каждой строки видеоинформации. В аппаратуре МСУ-ГС эти поправки записываются в первые и последние четыре отсчёта строки для каждого инфракрасного канала. В свою очередь, процедура наземной обработки для выделенного пикселя видеоинформации выглядит следующим образом: QUOTE , где QUOTE – коэффициент нормализации, рассчитываемый из передаваемых в телеметрии значений от горячего и холодного источника излучения.

Таким образом, предложен способ радиометрической коррекции изображений, получаемых при помощи многоэлементных фотоприёмников, основанный на использовании сигналов от элементов фотоприёмника, находящихся вне поля зрения объектива, позволяющий без существенной потери качества компенсировать возможный дрейф темновой составляющей сигнала фотоприемника и устранить помехи, возникающие при формировании изображения. Предложенный способ коррекции изображений будет использован для улучшения качества инфракрасных изображений аппаратуры МСУ-ГС. Кроме того, предлагаемый способ коррекции может быть использован для любой другой аппаратуры, формирующей изображения при помощи многоэлементных приемников излучения, при условии наличия в фотоприемнике элементов, находящихся вне светового поля, формируемого объективом в фокальной плоскости.


Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Способ радиометрической коррекции изображения от многоэлементного фотоприёмника инфракрасного диапазона
Источник поступления информации: Роспатент

Показаны записи 1-10 из 104.
10.11.2013
№216.012.7fb4

Сканирующее устройство для дистанционного получения изображений

Изобретение относится к области оптического приборостроения и предназначено для получения с космических аппаратов спектрозональных изображений поверхности Земли и облачного покрова, а также для мониторинга тепловых аномалий. Сканирующее устройство включает как минимум одну оптико-механическую...
Тип: Изобретение
Номер охранного документа: 0002498365
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.9098

Легкий фибробетон

Изобретение относится к производству строительных материалов и изделий, в частности к легким бетонам, предназначенным для утепления перекрытий и фасадов зданий и сооружений, а также изготовления декоративных изделий, применяемых для украшения фасадов и интерьеров зданий. Легкий фибробетон,...
Тип: Изобретение
Номер охранного документа: 0002502709
Дата охранного документа: 27.12.2013
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
12.01.2017
№217.015.5ba3

Многозональное сканирующее устройство для дистанционного получения изображений полного диска земли с геостационарной орбиты

Изобретение относится к космической технике, в частности к средствам дистанционного зондирования Земли. В многозональном сканирующем устройстве для дистанционного получения изображений полного диска Земли с геостационарной орбиты сформированы два независимых оптических информационных канала,...
Тип: Изобретение
Номер охранного документа: 0002589770
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6d15

Способ дистанционного зондирования земли

Способ дистанционного зондирования Земли включает в себя получение потока светового излучения Солнца, отраженного от зондируемого участка земной поверхности. Далее поток разделяют на два пучка равной интенсивности, по одному из которых осуществляют преддетекторную адаптивную компенсацию...
Тип: Изобретение
Номер охранного документа: 0002597144
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.721d

Способ радиоподавления несанкционированных каналов космической радиолинии "космический аппарат - земля" и система для его реализации

Группа изобретений относится к области радиотехники и может быть использована для избирательного радиоподавления N несанкционированных каналов космических радиолиний «космический аппарат (КА) - Земля», в частности для радиоподавления несанкционированных каналов радиолиний «КА - Земля»...
Тип: Изобретение
Номер охранного документа: 0002597999
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.901a

Наземный комплекс управления спутниковой навигационной системой

Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Достигаемый технический результат - повышение надежности взаимодействия средств, обеспечивающих управление и измерение на пунктах эксплуатации и в центре управления....
Тип: Изобретение
Номер охранного документа: 0002604053
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9639

Делитель мощности для бортовой аппаратуры космического аппарата

Изобретение относится к СВЧ радиотехнике. Делитель мощности содержит четыре направленных ответвителя на связанных линиях. Смежные направленные ответвители расположены перпендикулярно один к другому, так что проводники связанных линий данных направленных ответвителей образуют стороны двух...
Тип: Изобретение
Номер охранного документа: 0002608978
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.a3f2

Способ местоопределения тракторного агрегата и устройство для осуществления

Группа изобретений относится к автоматическому управлению трактором для контурной вспашки. Способ местоопределения тракторного агрегата заключается в том, что измеряют величину напряженности магнитного поля, сравнивают измеренное значение с компенсационным и формируют сигнал траекторного...
Тип: Изобретение
Номер охранного документа: 0002607337
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aef4

Устройство для измерения электрических параметров операционных усилителей и компараторов напряжения

Изобретение относится к измерительной технике и может использоваться при входном контроле аналоговых микросхем при производстве радиоэлектронной аппаратуры. Сущность: устройство содержит испытываемый операционный усилитель или компаратор напряжения, неинвертирующий вход которого через...
Тип: Изобретение
Номер охранного документа: 0002612872
Дата охранного документа: 13.03.2017
Показаны записи 1-10 из 49.
10.11.2013
№216.012.7fb4

Сканирующее устройство для дистанционного получения изображений

Изобретение относится к области оптического приборостроения и предназначено для получения с космических аппаратов спектрозональных изображений поверхности Земли и облачного покрова, а также для мониторинга тепловых аномалий. Сканирующее устройство включает как минимум одну оптико-механическую...
Тип: Изобретение
Номер охранного документа: 0002498365
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.9098

Легкий фибробетон

Изобретение относится к производству строительных материалов и изделий, в частности к легким бетонам, предназначенным для утепления перекрытий и фасадов зданий и сооружений, а также изготовления декоративных изделий, применяемых для украшения фасадов и интерьеров зданий. Легкий фибробетон,...
Тип: Изобретение
Номер охранного документа: 0002502709
Дата охранного документа: 27.12.2013
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
12.01.2017
№217.015.5ba3

Многозональное сканирующее устройство для дистанционного получения изображений полного диска земли с геостационарной орбиты

Изобретение относится к космической технике, в частности к средствам дистанционного зондирования Земли. В многозональном сканирующем устройстве для дистанционного получения изображений полного диска Земли с геостационарной орбиты сформированы два независимых оптических информационных канала,...
Тип: Изобретение
Номер охранного документа: 0002589770
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6d15

Способ дистанционного зондирования земли

Способ дистанционного зондирования Земли включает в себя получение потока светового излучения Солнца, отраженного от зондируемого участка земной поверхности. Далее поток разделяют на два пучка равной интенсивности, по одному из которых осуществляют преддетекторную адаптивную компенсацию...
Тип: Изобретение
Номер охранного документа: 0002597144
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.721d

Способ радиоподавления несанкционированных каналов космической радиолинии "космический аппарат - земля" и система для его реализации

Группа изобретений относится к области радиотехники и может быть использована для избирательного радиоподавления N несанкционированных каналов космических радиолиний «космический аппарат (КА) - Земля», в частности для радиоподавления несанкционированных каналов радиолиний «КА - Земля»...
Тип: Изобретение
Номер охранного документа: 0002597999
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.901a

Наземный комплекс управления спутниковой навигационной системой

Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Достигаемый технический результат - повышение надежности взаимодействия средств, обеспечивающих управление и измерение на пунктах эксплуатации и в центре управления....
Тип: Изобретение
Номер охранного документа: 0002604053
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9639

Делитель мощности для бортовой аппаратуры космического аппарата

Изобретение относится к СВЧ радиотехнике. Делитель мощности содержит четыре направленных ответвителя на связанных линиях. Смежные направленные ответвители расположены перпендикулярно один к другому, так что проводники связанных линий данных направленных ответвителей образуют стороны двух...
Тип: Изобретение
Номер охранного документа: 0002608978
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.a3f2

Способ местоопределения тракторного агрегата и устройство для осуществления

Группа изобретений относится к автоматическому управлению трактором для контурной вспашки. Способ местоопределения тракторного агрегата заключается в том, что измеряют величину напряженности магнитного поля, сравнивают измеренное значение с компенсационным и формируют сигнал траекторного...
Тип: Изобретение
Номер охранного документа: 0002607337
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aef4

Устройство для измерения электрических параметров операционных усилителей и компараторов напряжения

Изобретение относится к измерительной технике и может использоваться при входном контроле аналоговых микросхем при производстве радиоэлектронной аппаратуры. Сущность: устройство содержит испытываемый операционный усилитель или компаратор напряжения, неинвертирующий вход которого через...
Тип: Изобретение
Номер охранного документа: 0002612872
Дата охранного документа: 13.03.2017
+ добавить свой РИД