×
25.08.2017
217.015.d10c

Результат интеллектуальной деятельности: Гель для травления стеклянной оболочки микропроводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит пропиленгликоль, воду, аммоний фтористый кислый, этиловый спирт, сахарозу. Предлагаемый гель для травления обладает малой токсичностью за счет снижения концентрации активных ионов фтора и относительно высокой равномерностью травления. Использование геля обеспечивает возможность травления стеклянной оболочки со скоростью - 0,52-0,56 мкм/ч до шероховатости не более 100 нм, а также полное снятие стеклянной оболочки без образования язв и неравномерного травления микропровода, при этом гель обладает меньшей токсичностью за счет снижения концентрации активных ионов фтора. 3 пр.

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов.

Известна паста для травления стекла (Патент RU 2449000 C2 МПК C09K 13/00 C03C 15/00) следующего состава, мас. %: гидрофторид аммония - 10; сульфат бария - 17; серная кислота - 2; изоамилацетат - 1; фторид щелочноземельного металла - 34; вода - остальное.

Недостатком применения данной пасты является высокая шероховатость при растворении стекла - до 65 мкм, которая превышает диаметр микропроводов.

Также известна композиция для травления стекла (Патент US 6807824 В1). Композиция включает в себя, в различном соотношении, небольшое количество бифторида аммония; гликоли, глицерин, спирты и поверхностно-активные вещества, которые используются для косметической и фармацевтической продукции, и сахарозы.

Недостатком композиции, составы которой предназначены для художественной обработки стекла и изделий из него, является невозможность получения равномерно протравленной поверхности с шероховатостью менее 100 нм глубиной до 10 мкм.

Техническим результатом изобретения является достижение равномерности травления стеклянной оболочки микропровода, т.е. снижение шероховатости, а также снижение токсичности.

Технический результат достигается следующим образом.

Гель для травления содержит пропиленгликоль, воду, аммоний фтористый кислый, этиловый спирт, сахарозу при следующем соотношении компонентов, мас. %: пропиленгликоль 60,3-60,9; аммоний фтористый кислый 7,27-7,88; этиловый спирт 4,24-4,85; сахароза 2,12-2,73; вода - остальное.

Проводят полное погружение микропровода в гель для травления и выдерживают в течение времени рассчитываемого по формуле:

где τ - время выдержки, ч;

h - толщина стеклянной оболочки.

После выдержки в геле микропровод промывают в проточной дистиллированной воде в течение 10 мин и выдерживают на воздухе до полного высыхания.

Предлагаемый гель для травления обладает малой токсичностью за счет снижения концентрации активных ионов фтора и относительно высокой равномерностью травления. Использование геля обеспечивает возможность травления стеклянной оболочки со скоростью - 0,52-0,56 мкм/ч и с шероховатостью не более 100 нм, а также полное снятие стеклянной оболочки без образования язв и неравномерного травления микропровода.

Аммоний фтористый кислый обеспечивает, за счет гидролиза, образование фтороводородной кислоты, которая растворяет стеклянную оболочку микропровода. По мере расходования фтороводородной кислоты при растворении стеклянной оболочки протекает дальнейший гидролиз аммония фтористого кислого, пополняя гель фтороводородной кислотой.

Уменьшение концентрации аммония фтористого кислого ниже 7,27 мас. % нецелесообразно в связи уменьшением скорости протравленного слоя и в ряде случаев, при толщине стеклянной оболочки более 10 мкм, связано с недостижением полного удаления оболочки. Увеличение концентрации аммония фтористого кислого более 7,88 мас. % приводит к увеличению скорости травления и получению локально перетравленных участков и, как следствие, неоднородную поверхность микропровода.

Пропиленгликоль и сахароза выполняют роль загустителя (гелеобразователя) и снижают испарение фтористоводородной кислоты. Уменьшение их концентрации приведет к увеличению испарения фтористоводородной кислоты и увеличению токсичности геля, а увеличение концентрации - к неполному растворению компонентов геля и образованию осадка.

Добавка этилового спирта увеличивает длительность использования и хранения геля, обеспечивая равномерность распределения компонентов в геле и предотвращая его расслаивание.

Вода необходима для гидролиза аммония фтористого кислого и сахарозы, и значение ее концентрации рассчитано исходя из пределов растворимости веществ. Уменьшение концентрации воды приведет к неполному растворению веществ, а увеличение концентрации приведет к испарению фтористоводородной кислоты.

Приготовление геля при следующем соотношении компонентов, мас. %: пропиленгликоль 60,3; аммоний фтористый кислый 7,27; этиловый спирт 4,24; сахароза 2,12; вода - остальное, осуществляют следующим образом.

1. Приготовить раствор 1. Для этого измельчить 24 г аммония фтористого кислого и растворить его в 68 мл воды при температуре 25°C.

2. Приготовить раствор 2. Для этого растворить 7 г сахарозы в 18 мл воды, добавить 14 мл этилового спирта. Смесь сахарозы, воды и этилового спирта влить в предварительно разогретые на водяной бане до 50-60°C 199 мл пропиленгликоля. Остудить раствор 2 до температуры 25°C.

3. Смешать Раствор 1 и Раствор 2.

Приготовление геля при следующем соотношении компонентов, мас. %: пропиленгликоль 60,9; аммоний фтористый кислый 7,88; этиловый спирт 4,85; сахароза 2,73; вода - остальное, осуществляют следующим образом.

4. Приготовить раствор 1. Для этого измельчить 26 г аммония фтористого кислого и растворить его в 64 мл воды при температуре 25°C.

5. Приготовить раствор 2. Для этого растворить 9 г сахарозы в 14 мл воды, добавить 16 мл этилового спирта. Смесь сахарозы, воды и этилового спирта влить в предварительно разогретые на водяной бане до 50-60°C 201 мл пропиленгликоля. Остудить раствор 2 до температуры 25°C.

6. Смешать Раствор 1 и Раствор 2.

Приготовление геля при следующем соотношении компонентов, мас. %: пропиленгликоль 60,6; аммоний фтористый кислый 7,58; этиловый спирт 4,54; сахароза 2,42; вода - остальное, осуществляют следующим образом.

7. Приготовить раствор 1. Для этого измельчить 25 г аммония фтористого кислого и растворить его в 66 мл воды при температуре 25°C.

8. Приготовить раствор 2. Для этого растворить 8 г сахарозы в 16 мл воды, добавить 15 мл этилового спирта. Смесь сахарозы, воды и этилового спирта влить в предварительно разогретые на водяной бане до 50-60°C 201 мл пропиленгликоля. Остудить раствор 2 до температуры 25°C.

9. Смешать Раствор 1 и Раствор 2.

Предлагаемым гелем были обработаны следующие микропровода со стеклянной оболочкой.

Пример 1. Микропровод с толщиной стеклянной оболочки 7,375 мкм полностью погружали в гель для травления на 13 часов 40 мин. Измерение толщины стеклянной оболочки проводили с использованием сканирующего электронного микроскопа TESCAN VEGA 3SBH. Определяли диаметр микропровода (D) и диаметр жилы микропровода (d), значение толщины стеклянной оболочки микропровода (h) определяли по формуле:

В результате экспозиции микропровода с толщиной стеклянной оболочки 7,375 мкм в геле при следующем соотношении компонентов, мас. %: пропиленгликоль 60,3; аммоний фтористый кислый 7,27; этиловый спирт 4,24; сахароза 2,12; вода - остальное в течение 14 ч 11 мин, стеклянная оболочка полностью растворилась. Скорость травления составляет 0,52 мкм/ч, а шероховатость поверхности микропровода не превышает 100 нм.

Пример 2. Микропровод с толщиной стеклянной оболочки 8,47 мкм полностью погружали в гель для травления на 15 ч 7 мин 30 с. Измерение толщины стеклянной оболочки проводили по методике, описанной в примере 1. В результате экспозиции микропровода с толщиной стеклянной оболочки 8,47 мкм в геле при следующем соотношении компонентов, мас. %: пропиленгликоль 60,9; аммоний фтористый кислый 7,88; этиловый спирт 4,85; сахароза 2,73; вода - остальное, в течение 15 ч 7 мин 30 с, стеклянная оболочка полностью растворилась. Скорость травления составила 0,56 мкм/ч, а шероховатость поверхности микропровода не превышает 100 нм.

Пример 3. Микровод с толщиной стеклянной оболочки 8,105 мкм полностью погружали в гель для травления на 15 ч. В результате экспозиции микропровода с толщиной стеклянной оболочки 8,105 мкм в геле при следующем соотношении компонентов, мас. %: пропиленгликоль 60,6; аммоний фтористый кислый 7,58; этиловый спирт 4,54; сахароза 2,42; вода - остальное, стеклянная оболочка полностью растворилась. Скорость травления составила 0,54 мкм/ч, а шероховатость поверхности микропровода не превышает 100 нм.

На поверхности микропроводов после травления отсутствуют непротравленные области стеклянной оболочки, а также глубокие язвы, шероховатость поверхности микропровода не превышает 100 нм, что в 650 и 4-6 раз меньше показателей известных прототипов. Это позволяет использовать гель для создания ГМИ-датчиков, предназначенных для сканирования объектов с высоким пространственным разрешением. Предлагаемый гель обладает меньшей токсичностью за счет снижения концентрации активных ионов фтора.

Источник поступления информации: Роспатент

Показаны записи 241-250 из 323.
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
14.05.2019
№219.017.5183

Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов. Сферичные...
Тип: Изобретение
Номер охранного документа: 0002687352
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.518b

Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента

Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента. Крупнозернистые узкофракционные порошки WC с зернистостью 5-20 мкм смешивают без размола...
Тип: Изобретение
Номер охранного документа: 0002687355
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5225

Устройство для адаптивного временного профилирования ультракоротких лазерных импульсов

Изобретение относится к области лазерной техники и касается устройства для адаптивного временного профилирования ультракоротких лазерных импульсов. Устройство включает в себя лазерный задающий осциллятор, стретчер, обеспечивающий чирпирование лазерного импульса, акустооптическую дисперсионную...
Тип: Изобретение
Номер охранного документа: 0002687513
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5376

Сверло для получения отверстий с задней подрезкой

Изобретение относится к сверлу для изготовления отверстия с задней подрезкой, в частности в облицовочных панелях из керамики, камня, бетона и других хрупких материалов, которые крепятся на фасадах здания с помощью расширяемого анкера. В сверле, содержащем закрепленную на хвостовике со смещением...
Тип: Изобретение
Номер охранного документа: 0002687589
Дата охранного документа: 15.05.2019
24.05.2019
№219.017.5e02

Бесконтактный датчик микрорельефа

Изобретение может использоваться для выявления и измерения микрорельефа поверхности из металлов и диэлектриков, а также с целями дефектоскопии поверхности и обнаружения неоднородности приповерхностных слоев. Бесконтактный датчик микрорельефа состоит из одного или нескольких микроволновых...
Тип: Изобретение
Номер охранного документа: 0002688902
Дата охранного документа: 22.05.2019
30.05.2019
№219.017.6b6d

Способ получения модифицированных кристаллов магнетита

Изобретение относится к способу получения модифицированных кристаллов магнетита (FeO), содержащих на поверхности смесь липидов, и может быть использовано в фармацевтической промышленности. Предложенный способ получения модифицированных кристаллов магнетита включает смешение 138 мас.ч....
Тип: Изобретение
Номер охранного документа: 0002689392
Дата охранного документа: 28.05.2019
15.06.2019
№219.017.8340

Литейный алюминиевый сплав с добавкой церия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691475
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.8374

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691476
Дата охранного документа: 14.06.2019
Показаны записи 181-181 из 181.
12.04.2023
№223.018.43c2

Магниевый сплав и способ получения заготовок для изготовления биорезорбируемых систем фиксации и остеосинтеза твердых тканей в медицине

Изобретение относится к области металлургии, конкретно к сплавам на основе магния, а также к получению из них деформируемых заготовок, и может быть использовано для изготовления биорезорбируемых систем фиксации и остеосинтеза твердых тканей в медицине. Магниевый сплав содержит, мас.%: галлий...
Тип: Изобретение
Номер охранного документа: 0002793655
Дата охранного документа: 04.04.2023
+ добавить свой РИД