×
25.08.2017
217.015.d0d4

Результат интеллектуальной деятельности: СПОСОБ МОКРОЙ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ЭЛЕКТРОЛИЗНЫХ КОРПУСОВ ПРОИЗВОДСТВА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к цветной металлургии и может быть использовано для очистки отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и соединений серы с получением в качестве товарного продукта сульфата натрия. Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия включает очистку газа от фтористого водорода и соединений серы путем его орошения содосульфатным раствором, выделение безводного сульфата натрия в выпарном аппарате, при этом орошение газа содосульфатным раствором ведут с получением насыщенного содосульфатного раствора, часть которого подают в выпарной аппарат и упаривают до достижения предельной концентрации сульфата натрия, а оставшийся раствор направляют на отстаивание, после чего возвращают на стадию орошения, при этом упаренный раствор сульфата натрия направляют на обезвоживание и сушку с последующим получением готового сульфата натрия, а маточный раствор после упаривания повторно направляют в выпарной аппарат. Технический результат - повышение качества сульфата натрия. 3 з.п. ф-лы, 1 ил.

Изобретение относится к цветной металлургии и может быть использовано для очистки отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и соединений серы с получением в качестве товарного продукта сульфата натрия.

Известен способ мокрой очистки отходящих газов электролизных корпусов производства алюминия (патент RU 2254293, C01D 5/00, C01F 7/54, опубл. 27.11.2014), включающий очистку газа от серных окислов и фтористых соединений путем их орошения содосульфатным раствором в мокрых скрубберах, выделение из раствора после газоочистки основного количества фтористого натрия в виде криолита. Насыщенный раствор, очищенный от криолита, дополнительно очищают от фтористого натрия путем его обработки при 95-105°С в течение 1,5-2,0 часов известковым молоком, вводимым в насыщенный раствор из расчета стехиометрического связывания фтора, содержащегося в растворе, в CaF2. Очищенный от фтора насыщенный раствор далее подвергают концентрирующей выпарке до достижения плотности упаренного раствора 1,37±0,02 г/л и выделяют из него в осадок сульфат натрия в виде беркеитовой соли путем введения в упаренный раствор карбонатной соды до достижения концентрации титруемой щелочи в маточном растворе 215-230 г/л Na2O и плотности раствора в суспензии до 1,35±0,02 г/л при перемешивании суспензии при температуре 95-100°С в течение 30-40 минут.

К недостаткам данного способа можно отнести:

- снижение эффективности процесса выпаривания за счет введения известкового молочка и вследствие этого зарастания солями жесткости теплообменных трубок выпарного аппарата - снижение его срока службы;

- значительное увеличение теплоэнергетических затрат производства на выделения фтора в воде фтористого кальция.

Известен способ мокрой очистки отходящих газов электролизных корпусов производства алюминия (Патент RU 2320539, C01D 5/00, C01D 5/16, опубл. 27.03.2008), включающий очистку газа от серных окислов и фтористых соединений путем их орошения содосульфатным раствором в мокрых скрубберах, выделение из раствора после газоочистки основного количества фтористого натрия в виде криолита. В способе переработки содосульфатного раствора, получаемого после очистки отходящих газов электролизных корпусов при производстве алюминия, включающем очистку газа от фтористых соединений и диоксида серы путем его орошения в мокрых скрубберах содосульфатным раствором, выделение из части циркулирующего содосульфатного раствора фтористого натрия в виде фтористого кальция, из маточного содосульфатного раствора после его очистки от фтористого натрия выделяют в осадок очищенный от примесей крупнокристаллический безводный сульфат натрия путем упарки маточного раствора с доведением концентрации титруемой карбонатной щелочи в упаренном растворе до 75-100 г/л в пересчете на Na2СО3 и плотности упаренного раствора 1,30-1,31 г/л при температуре 70-105°С.

Пределы температуры, плотности и концентрации карбонатной соды в упаренном растворе выбираются в зависимости от величины остаточной концентрации фтористого натрия в содосульфатном растворе, которая после его очистки от фтористого натрия известковым молоком может колебаться в пределах 0,5-1,0 г/л в пересчете на NaF.

При остаточной концентрации фтористого натрия в очищенном известковым молоком содосульфатном растворе не выше 0,5 г/л NaF, плотность и концентрация карбонатной соды в упаренном растворе может быть допущена соответственно до 1,31 г/л и 100 г/л Na2СО3 при температуре раствора 70-80°С, что обеспечивает более глубокое выделение сульфата натрия из упаренного содосульфатного раствора, не допуская при этом его загрязнения карбонатной содой и фтористым натрием из-за возможного его выделения из упаренного раствора в осадок в виде двойной соли фтористого натрия с сульфатом натрия (NaF, Na2SO4).

При повышении остаточной концентрации фтористого натрия в очищенном известковым молоком содосульфатном растворе до одного и выше грамма на литр для исключения возможности загрязнения выделяемого в осадок сульфата натрия фтористым натрием требуется снизить плотность и концентрацию карбонатной соды в упаренном содосульфатном растворе до 1,30 г/л и 75 г/л Na2CO3 и повысить температуру раствора до 90-100°С.

К недостаткам данного способа можно отнести:

- смешивание упаренного маточного раствора с растворами газоочистки приводит к повышению концентрации сульфата натрия;

- значительное увеличение теплоэнергетических затрат производства на выделения фтора в виде фтористого кальция;

- снижение эффективности процесса выпаривания за счет введения известкового молочка и вследствие этого зарастания солями жесткости теплообменных трубок выпарного аппарата - снижение его срока службы.

Известен способ выделения сульфата натрия из растворов газоочистки электролитического производства алюминия (заявка на изобретение RU 94029709, C01D 5/00, опубл. 27.08.1996), заключающийся в кристаллизации сульфата натрия при охлаждении насыщенного раствора в каскадно расположенных кристаллизаторах при температуре 7-(-5)°С, причем температуру каждого предыдущего кристаллизатора поддерживают на таком уровне, чтобы она отличалась от температуры последующего кристаллизатора на 4-6°С.

Способ является сложным в эксплуатации и связан с большими теплоэнергетическими затратами на переделах глубокого охлаждения раствора с выделением в осадок десятиводной глауберовой соли (Na2SO4⋅10 Н2О) с последующей ее сушкой. По указанной причине способ не используется на алюминиевых заводах.

В качестве ближайшего аналога (прототипа) выбран способ по патенту RU 2363525, C01D 5/00, опубл. 10.08.2009, согласно которому мокрая очистка отходящих газов электролизных корпусов производства алюминия включает очистку газа от фтористого водорода и диоксида серы путем его орошения в мокрых скрубберах содосульфатным раствором, очистку содосульфатного раствора от фтора известковым молоком с получением фтористого кальция, выделение из очищенного от фтора маточного содосульфатного раствора безводного сульфата натрия путем его упарки, при этом очистке от фтора и выделению фтористого кальция подвергают 4-10% содосульфатного раствора после мокрой очистки газов, а остальной раствор возвращают на газоочистку, при этом содосульфатный раствор, очищенный от фтора, подвергают выпарке с выделением безводного сульфата натрия, упаренный маточный раствор смешивают со свежеприготовленным содощелочным раствором и возвращают на мокрую газоочистку вместе с основным содосульфатным раствором.

Недостатками способа являются:

1) указанная входная концентрация Na2SO4 250 г/л является недостижимой при очистке отходящих газов электролизных корпусов производства алюминия. Так как при достижении концентрации Na2SO4 200 г/л (сущ.) газоочистное оборудование перестает функционировать;

2) большое количество переделов (очистка от фтористого натрия), связанных с увеличением растворооборота на предприятии;

3) использование дорогостоящего сырья - каустической соды для перевода бикарбонатной соды в карбонатную.

Задача изобретения - повышение эффективности работы газоочистного оборудования и исключение строительства новых и консервация используемых шламовых полей с получением сухого сульфата натрия для захоронения или продажи - направлена на исключение вышеуказанных недостатков.

При этом техническим результатом является реализация поставленной задачи, а именно повышение качества получаемого для дальнейшей реализации сульфата натрия в замкнутом цикле: газоочистка - шламовое поле.

Общими с прототипом являются признаки:

- очистку газа от фтористого водорода и диоксида серы производят путем его орошения содосульфатным раствором;

- выделение безводного сульфата натрия осуществляют путем его упарки в выпарном аппарате.

Отличительные признаки:

- исключение стадии очистки от фтористого натрия, сокращение количества переделов;

- использование для орошения содового раствора после отстаивания его на шламовом поле;

- подача на упаривание растворов с более низкой концентрацией сульфата натрия (70-170 г/л).

Технический результат достигается за счет того, что в способе мокрой очистки отходящих газов электролизных корпусов производства алюминия, включающем очистку газа от фтористого водорода и соединений серы путем его орошения содосульфатным раствором, выделение безводного сульфата натрия в выпарном аппарате, согласно заявляемому изобретению орошение газа содосульфатным раствором ведут с получением насыщенного содосульфатного раствора, часть которого подают в выпарной аппарат и упаривают до достижения предельной концентрации сульфата натрия, а оставшийся раствор направляют на отстаивание, после чего возвращают на стадию орошения, при этом упаренный раствор сульфата натрия направляют на обезвоживание и сушку с последующим получением готового сульфата натрия, а маточный раствор после упаривания повторно направляют в выпарной аппарат.

Способствует достижению технического результата то, что на упаривание подают 3-6% насыщенного содосульфатного раствора, содержание сульфата натрия в насыщенном содосульфатном растворе при подаче его в выпарной аппарат составляет 70-170 г/л, а упаривание ведут до концентрации сульфата натрия 190-450 г/л.

Эффективность очистки газа от соединений серы и коэффициент полезного действия газоочистки повышается за счет выведения равновесного или избыточного количества сульфата натрия, приходящего с сырьем, и возможность выведения из общего баланса газоочистка-шламовое поле сульфата натрия в сухом виде и жидкой части в виде сброса сокового пара и конденсата выпарного аппарата.

Часть от 3 до 6% объема циркулирующего в системе газоочистки насыщенного содосульфатного раствора с концентрацией Na2SO4 70-170 г/л, NaHCO3 15-40 г/л, NaF 5-7 г/л и Nа2СО3 5-25 г/л подвергают упариванию в выпарном аппарате до достижения предельной концентрации Na2SO4 190-450 г/л, а затем упаренный раствор подают на обезвоживание и сушку, а маточный раствор возвращают на выпарной аппарат.

Предел концентрации Na2SO4 70-170 г/л, в отличие от прототипа, является наиболее оптимальным, так как более высокие концентрации приводят к прекращению функционирования «мокрой» ступени газоочистной установки.

Подача на стадию упаривания части объема в пределах 3-6% обусловлена количеством SO2, поступающего на газоочистку в составе отходящих газов электролизного производства, с учетом неполноты поглощения сернистого газа содовым раствором, в пересчете на количество образующегося Na2SO4 тонн в час, которое необходимо выводить из объема растворооборота.

Достижение концентрации Na2SO4 при упаривании ниже 190 г/л нецелесообразно в связи с тем, что при дальнейшем обезвоживании получаемого продукта потребуется установка дополнительного оборудования для сгущения, а при концентрации выше 450 г/л будет происходить снижение эффективности работы выпарного аппарата ввиду того, что высокая концентрация раствора приведет к смещению зоны кипения жидкости из сепаратора в теплообменные трубки, что приведет к быстрому осаждению и инкрустации сульфата натрия на теплообменной поверхности.

Технологическая схема реализации заявляемого способа представлена на чертеже.

Работа алюминиевых электролизеров сопровождается образованием отходящих газов, содержащих СО2, SO2, SO3, HF, а также различные органические соединения. По существующей технологии газы поступают на газоочистку, где указанные примеси поглощаются и нейтрализуются с помощью содосульфатного раствора. При этом сернистый газ SO2 окисляется до SO3. Последний после взаимодействия с содой образует сульфат натрия. Накопление сульфата в оборотных растворах газоочистки приводит к зарастанию оборудования соляными корками и инкрустациями.

Очистка газов электролизного производства алюминия в аппаратах мокрой газоочистки обеспечивается путем орошения проходящего через аппарат газа содосульфатным раствором.

Содосульфатный раствор, используемый для улавливания фтористого водорода HF, соединений серы (SO2, SO3) из отходящих газов электролизного производства, имеет следующий состав, г/дм3:

Сода кальцинированная (Na2CO3) 15-35
Бикарбонат натрия (NaHCO3) 3-12
Сульфат натрия (Na2SO4) до 120
Фторид натрия (NaF) 4-10

Процесс абсорбции HF, SO2, СO2 протекает в пенном слое в результате следующих химических реакций:

Na2CO3+HF=NaF+NaHCO3

NaHCO3+HF=NaF+H2O+CO2

Na2CO3+CO2+H2O=2NaHCO3

Na2CO3+SO2+½О2=Na2SO4+CO2

Полученный на газоочистных установках насыщенный содосульфатный раствор содержит фторид натрия NaF, кальцинированную соду Na2CO3, гидрокарбонат натрия NaHCO3, сульфат натрия Na2SO4, а также частицы уловленной пыли. Осветление (отстаивание) раствора газоочистки производится для отделения и утилизации шламов газоочистки (твердых частиц). Пульпа из аппаратов «мокрой» стадии газоочистки откачивается для отстаивания на шламовое поле. Осветленный после отстаивания раствор со шламового поля направляется для приготовления содосульфатного раствора на газоочистку.

Способ мокрой очистки отходящих газов электролизных корпусов позволяет получить высококачественный сульфат натрия за счет увеличения концентрации сульфата натрия в насыщенных содосульфатных растворах газоочистки и эффективного улавливания соединений серы, благодаря многоразовой циркуляции растворов со сниженной концентрацией сульфата натрия (в системе «мокрая газоочистка-шламовое поле»).


СПОСОБ МОКРОЙ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ЭЛЕКТРОЛИЗНЫХ КОРПУСОВ ПРОИЗВОДСТВА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 234.
12.08.2019
№219.017.beeb

Способ разделения нано- и микроразмерных частиц при обогащении полезных ископаемых

Предложенное изобретение относится к области обогащения полезных ископаемых. Способ разделения частиц пыли при обогащении полезных ископаемых с использованием газового сепаратора включает стадию разделения частиц по крупности. Производят сепарацию нано- и микроразмерных частиц пыли с помощью...
Тип: Изобретение
Номер охранного документа: 0002696732
Дата охранного документа: 05.08.2019
24.08.2019
№219.017.c382

Способ формирования вторичного анода алюминиевого электролизера с самообжигающимся анодом

Изобретение относится к способу формирования вторичного анода алюминиевого электролизера с самообжигающимся анодом. Способ включает приготовление подштыревой массы из связующего и коксового наполнителя с содержанием в нем не менее 20% графита с размером фракции менее 2,0 мм, загрузку...
Тип: Изобретение
Номер охранного документа: 0002698121
Дата охранного документа: 22.08.2019
24.08.2019
№219.017.c39f

Перфорированный металлический инертный анод для получения алюминия электролизом расплава

Изобретение относится к перфорированному аноду для электролитического получения алюминия электролизом фторидных расплавов. Анод выполнен в виде перфорированной структуры, образованной продольными и поперечными анодными элементами, которые пересекаются друг с другом и ограничены боковыми...
Тип: Изобретение
Номер охранного документа: 0002698162
Дата охранного документа: 22.08.2019
24.08.2019
№219.017.c3ab

Шихта для получения ферросилиция

Изобретение относится к области металлургии, в частности к электротермическому получению кремнистых ферросплавов. Шихта для получения ферросилиция содержит, мас.%: кварцит 22,0 - 46,7; углеродистый восстановитель 30,3 - 33,4; стальную стружку 7,3 - 7,7; шлак рафинирования технического кремния...
Тип: Изобретение
Номер охранного документа: 0002698161
Дата охранного документа: 22.08.2019
27.08.2019
№219.017.c3c7

Композиционный материал на основе алюминия (варианты) и изделие из него

Изобретение относится к материалам для защиты от радиационного излучения, обладающим повышенной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения, и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и...
Тип: Изобретение
Номер охранного документа: 0002698309
Дата охранного документа: 26.08.2019
29.08.2019
№219.017.c477

Огнеупорная бетонная смесь

Изобретение относится к области металлургии, в частности, применяется для футеровки металлургических агрегатов, например сталеразливочных ковшей, промежуточных ковшей, вакууматоров, для изготовления формованных огнеупоров методом вибролитья и т.д., работающих при температуре до 1750°С....
Тип: Изобретение
Номер охранного документа: 0002698390
Дата охранного документа: 26.08.2019
01.11.2019
№219.017.dca8

Система непрерывного контроля температуры контактов масляных выключателей

Изобретение относится к области электротехники, в частности к системам контроля параметров масляных выключателей среднего напряжения. Технический результат заключается в повышении контроля температуры рабочих контактов масляных выключателей среднего напряжения. Достигается тем, что система...
Тип: Изобретение
Номер охранного документа: 0002704606
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dcbb

Способ модифицирования чугуна и модификатор для осуществления способа

Изобретение относится к металлургии и литейному производству и может быть использовано для производства модифицированного чугуна для изготовления быстроизнашивающихся деталей машин. Способ включает получение расплава чугуна, перелив расплава в ковш и введение в ковш модификатора. В качестве...
Тип: Изобретение
Номер охранного документа: 0002704678
Дата охранного документа: 30.10.2019
13.12.2019
№219.017.eceb

Литейный алюминиевый сплав

Изобретение относится к области металлургии и может быть использовано для получения фасонных отливок гравитационным литьем в кокиль, литьем под давлением, кристаллизацией под давлением, используемых в автомобилестроении, для корпусов электронных устройств, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002708729
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.f008

Сорбционный аппарат

Изобретение относится к устройствам для сорбционного извлечения полезных компонентов из растворов и пульп и может быть использовано в гидрометаллургии редких, цветных и благородных металлов. Сорбционный аппарат содержит корпус, эрлифт, циркулятор, диспергатор, патрубки для ввода и вывода пульпы...
Тип: Изобретение
Номер охранного документа: 0002709556
Дата охранного документа: 18.12.2019
Показаны записи 191-198 из 198.
20.05.2023
№223.018.65f2

Сплав на основе алюминия и изделие из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-цинк-магний, и может быть использовано для получения высокопрочных прессованных изделий и сварных конструкций пешеходных и автодорожных мостов, работающих под...
Тип: Изобретение
Номер охранного документа: 0002771396
Дата охранного документа: 04.05.2022
20.05.2023
№223.018.65f3

Сплав на основе алюминия и изделие из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-цинк-магний, и может быть использовано для получения высокопрочных прессованных изделий и сварных конструкций пешеходных и автодорожных мостов, работающих под...
Тип: Изобретение
Номер охранного документа: 0002771396
Дата охранного документа: 04.05.2022
20.05.2023
№223.018.66d5

Порошковый материал с высокой теплопроводностью

Изобретение относится к области металлургии, а именно к порошковым материалам на основе алюминиевых сплавов, применяемых для изготовления деталей методами аддитивных технологий, в том числе методом селективного лазерного сплавления. Порошковый алюминиевый материал для изготовления деталей с...
Тип: Изобретение
Номер охранного документа: 0002752489
Дата охранного документа: 28.07.2021
20.05.2023
№223.018.673b

Деформируемый сплав на основе алюминия и изделие из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым сплавам на основе системы алюминий-магний-кремний, предназначенным для применения в элементах конструкций нефтегазовой отрасли, в частности для изготовления бурильных труб и цилиндрических полых слитков....
Тип: Изобретение
Номер охранного документа: 0002754541
Дата охранного документа: 03.09.2021
16.06.2023
№223.018.7c16

Порошковый алюминиевый материал

Изобретение относится к порошковой металлургии, в частности к порошковым алюминиевым материалам для изготовления деталей с использованием аддитивных технологий, в том числе методом селективного лазерного синтеза. Порошковый алюминиевый материал получен газовым распылением и содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002744075
Дата охранного документа: 02.03.2021
16.06.2023
№223.018.7c38

Кристаллизатор для вертикального литья алюминиевых слитков

Изобретение относится к области литейного производства и может быть использовано при вертикальном литье слитков из алюминия и его сплавов. Кристаллизатор для вертикального литья при производстве алюминиевых слитков содержит корпус с верхним и нижним фланцами. Корпус кристаллизатора выполнен в...
Тип: Изобретение
Номер охранного документа: 0002742553
Дата охранного документа: 08.02.2021
16.06.2023
№223.018.7c3a

Способ обесфторивания и выделения безводного сульфата натрия из оборотных растворов газоочистки алюминиевых электролизеров

Изобретение относится к способу обесфторивания и выделения безводного сульфата натрия из оборотных растворов мокрой газоочистки алюминиевых электролизеров. Способ включает каустификацию содосульфатного оборотного раствора газоочистки, которую ведут известковым молоком, приготовленным на...
Тип: Изобретение
Номер охранного документа: 0002742987
Дата охранного документа: 12.02.2021
17.06.2023
№223.018.7e8d

Катодное устройство алюминиевого электролизера

Изобретение относится к металлургии алюминия электролизом расплавленных солей, в частности к катодному устройству электролизера, и касается конструкции верхнего пояса продольных и торцевых стенок катодного кожуха. Катодное устройство электролизера для производства алюминия содержит...
Тип: Изобретение
Номер охранного документа: 0002770602
Дата охранного документа: 18.04.2022
+ добавить свой РИД