×
25.08.2017
217.015.d0ba

СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного напряжения на электроды, расположенные рядами параллельно потоку газа, при этом последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов. Устройство для увеличения скорости ионного ветра, характеризующееся тем, что источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов. Техническим результатом предлагаемого изобретения является увеличение скорости электрического ветра и увеличение КПД. 2 н.п. ф-лы, 5 ил.

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д.

Известно устройство для вентиляции воздуха, содержащее коронирующие и осадительные электроды, расположенные параллельно потоку газа, подключенные к источнику высокого напряжения, одна сторона коронирующего электрода является коронирующей в направлении воздушного потока, при этом осадительные электроды выполнены в виде сплошных пластин [1].

Недостатками этого устройства являются: большая потребляемая мощность, необходимость увеличение габаритов электродной системы для увеличения максимальной скорости электрического ветра, малая скорость электрического ветра.

Известен вентилятор-озонатор, включающий корпус, внутри которого расположены несколько рядов пластинчатых электродов, выполненных в аэродинамически профилированном виде с прикрепленными острийными излучателями [2].

Недостатками этого устройства являются сложная конструкция электродов, выполненных в аэродинамически профилированном виде, где к заостренному ребру каждой пластины прикреплены стержневые острийные излучатели, и низкая скорость воздушного потока (не более 1,08 м/с).

Наиболее близким по технической сущности и достигаемому эффекту является способ увеличения скорости электрического ветра, заключающийся в подаче высокого напряжения на электроды с излучателями, расположенными рядами параллельно потоку газа [3].

Недостатками данного способа являются большие габариты электродной системы, т.к. для увеличения скорости электрического ветра увеличивается число ступеней ускоряющих электродов и мощность, невысокий КПД.

Основным техническим результатом предлагаемого изобретения является увеличение скорости электрического ветра и увеличение КПД.

Технический результат достигается тем, что последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов, при этом источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов.

На фиг. 1 приведена схема устройства для комбинированного питания постоянным и импульсным напряжением, где ГВИ - генератор высоковольтных импульсов, ЭС - электродная система, ИПН - источник постоянного напряжения. Комбинированное напряжение питания - это такой вид напряжения, когда на постоянное напряжение накладывается импульсное. На фиг. 2 показана форма и параметры комбинированного напряжения. На фиг. 3 и фиг. 4 приведены экспериментальные зависимости скорости воздушного потока от параметров комбинированного напряжения для одноступенчатой электродной системы с межэлектродным расстоянием d=15 мм. На фиг. 5 представлены графики зависимости КПД от скорости воздушного потока для различных видов питающего напряжения.

Примером конкретной реализации заявляемого способа увеличения скорости электрического ветра является устройство, представленное на фиг. 1. Устройство содержит электродную систему (ЭС) и источник питания. Источник питания состоит из ИПН и генератора высоковольтных импульсов ГВИ, на выходе которого стоит повышающий трансформатор Т1 с коэффициентом трансформации n.

Токоограничивающий элемент R1, в качестве которого может использоваться резистор или индуктивность, ограничивает ток при возникновении искрового пробоя в электродной системе (ЭС) и защищает ИПН от короткого замыкания. Разделительный конденсатор С1 должен иметь достаточную емкость, чтобы передавать импульс в нагрузку без искажения. Для устранения взаимного влияния ГВИ и ИПН может устанавливаться последовательно с R1 высоковольтный диод.

Конструкция электродной системы (ЭС) состоит из нескольких рядов пластинчатых электродов, расположенных на расстоянии d друг от друга. Коронирующие стороны всех электродов расположены в одном направлении, что обеспечивает генерацию однонаправленного потока воздуха.

Устройство работает следующим образом. На соседние ряды электродов подается напряжение от ИПН через R1, и параллельно им, через конденсатор С1, прикладывается импульсное напряжение от ГВИ, определенной полярности, чтобы происходило сложение постоянного напряжения от ИПН и импульсного - от ГВИ (фиг. 1).

Постоянное напряжение, поступающее с ИПН, заряжает конденсатор С1 до напряжения U2, которое прикладывается к электродной системе ЭС. При подаче импульса с ГВИ через первичную обмотку трансформатора Т1 начинает протекать ток. Возникшее напряжение на вторичной обмотке имеет такую полярность, что складывается с напряжением на конденсаторе (фиг. 2). В схеме фиг. 1 показан случай, когда постоянное и импульсное напряжение имеют положительную полярность.

Наличие постоянного напряжения обеспечивает стационарное распределение электрического поля в газоразрядном промежутке d, за счет чего происходит перемещение образовавшихся ионов. Импульсное напряжение приводит к увеличению количества ионов и вследствие малой длительности не оказывает существенное влияние на скорость ионов.

За счет коротких импульсов напряжения (tu<<Т) большой амплитуды происходит увеличение количества ионов, что приводит к увеличению работы, производимой полем по перемещению заряда W=q⋅U, где q - суммарный заряд ионов в промежутке между соседними рядами электродов; U - разность потенциалов газоразрядного промежутка (d). Заряд однозарядных ионов зависит от количества и находится по формуле: q=e⋅N, где е - величина элементарного заряда; N - количество ионов. Ионы, ускоренные в электрическом поле, сталкиваясь с нейтральными молекулами и атомами воздуха, передают им свою кинетическую энергию. Таким образом, чем больше заряд, тем большую работу совершает поле и тем больше энергии передается нейтральным молекулам и атомам воздуха и тем больше скорости электрического ветра.

Экспериментально было установлено (фиг. 3), что увеличение скорости воздушного потока происходит при увеличении частоты следование импульсов в диапазоне от 0 до 30 кГц.

В отличие от прототипа, где электродная система питается только постоянным напряжением в предлагаемом устройстве, за счет использования комбинированного напряжения, можно повысить максимальную скорость электрического ветра, не изменяя конфигурацию электродной системы (без добавления дополнительных ускоряющих ступеней).

Вследствие нелинейной вольт-амперной характеристики коронного разряда, при напряжениях питания, близких к предпробойным, происходит резкое снижение КПД, т.к. с увеличением напряжения потребляемая мощность возрастает быстрее, чем увеличивается скорость электрического ветра. Поэтому наиболее выгодно питать электродную систему комбинированным напряжением при значении постоянного напряжения ниже предпробойного, а амплитудой импульсного напряжения и частотой - регулировать скорость воздушного потока.

Проведенные эксперименты показали, что скорость электрического ветра не изменяется при увеличении длительности импульсного напряжения в диапазоне от 250 нс до 2 мкс, возрастает только потребляемая мощность импульсного генератора. Минимальная длительность была ограничена возможностями генератора.

Увеличение частоты импульсов приводит к увеличению скорости электрического ветра (фиг. 3). Однако при частоте импульсов напряжения более 30 кГц происходит дальнейший рост потребляемой мощности, а скорость воздушного потока остается неизменной, что приводит к снижению КПД устройства.

На фиг. 4 представлены экспериментальные зависимости скорости электрического ветра от амплитуды импульсного напряжения (частота импульсов во всех случаях 15 кГц), для различных значений постоянного напряжения. С увеличением амплитуды импульсов происходит увеличение скорости воздушного потока, при любом значении постоянного напряжения.

На фиг. 5 показаны зависимости КПД от скорости воздушного потока для различных видов питающего напряжения: только постоянное напряжение, комбинированное для двух случаев. Скорость воздушного потока в первом случае увеличивается за счет увеличения постоянного напряжения. В случаях с комбинированным питанием - устанавливалось значение постоянного напряжения 10 кВ и 15кВ и скорость увеличивалась за счет увеличения амплитуды импульсного напряжения при фиксированной частоте 15 кГц.

КПД определялось как отношение энергии воздушного потока к энергии, вводимой в коронный разряд. Из фиг. 5 видно, что КПД больше у устройства, питающегося комбинированным напряжением, и увеличивается с увеличением амплитуды импульсного напряжения.

Кроме того, комбинированное питание позволяет увеличить надежность устройства за счет того, что отсутствуют искровые пробои газоразрядного промежутка электродной системы при изменении параметров внешней среды: влажность, давление, запыленность, наличие аэрозольных частиц. Для этого необходимо установить минимальный уровень постоянного напряжения, при котором начинает устойчиво гореть коронный разряд, а амплитудой импульсного напряжения задавать скорость воздушного потока. Вследствие малой длительности импульсов напряжения - пробой промежутка не наступает.

Список литературы

1. Патент №2492394 С2, кл. F24F 3/00.

2. Патент №2121115 С1, кл. F24F 3/16.

3. Патент №2313732 С2, кл. F24F 3/16.


СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 96.
13.02.2018
№218.016.2125

Фильтр подавления помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002641644
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.253c

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002642418
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.25a3

Вычислитель для подавления помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002642808
Дата охранного документа: 26.01.2018
04.04.2018
№218.016.342a

Микрофокусная рентгеновская трубка

Изобретение относится к прецизионной контрольно-измерительной технике нового поколения, и предназначено для улучшения аналитических, эксплуатационных и потребительских характеристик рентгеновского технологического и исследовательского оборудования, и может быть использовано в установках...
Тип: Изобретение
Номер охранного документа: 0002645749
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.360c

Вычислитель для режекторной фильтрации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002646330
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3753

Способ формирования изображений объектов в радиометре с двумя антеннами

Изобретение относится к пассивным радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра с двумя антеннами, принимающими сигналы в двух частотных диапазонах. Достигаемый технический результат – повышение пространственного разрешения изображения в первой...
Тип: Изобретение
Номер охранного документа: 0002646434
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3905

Способ оценки параметров распределения времени запаздывания возникновения разряда и устройство для его осуществления

Изобретение относится к индикаторной технике и может быть использовано при исследовании характеристик газоразрядных индикаторов и разработке схем управления для них. Способ оценки параметров распределения времени запаздывания возникновения разряда газоразрядных индикаторов заключается в...
Тип: Изобретение
Номер охранного документа: 0002646897
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3b77

Зонд атомно-силового микроскопа с программируемой динамикой изменения спектральных портретов излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Согласно изобретению кантилевер соединен с электропроводящей зондирующей иглой, вершина которой...
Тип: Изобретение
Номер охранного документа: 0002647512
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3dc7

Способ наблюдения за объектами с помощью радиометра с двумя антеннами

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным (пассивным) системам наблюдения за объектами с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн в условиях повышенного шага сканирования антенны радиометра. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002648270
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.46d0

Способ масс-спектрометрического анализа ионов в трехмерной ионной ловушке и устройство для его осуществления

Изобретение относится к динамической масс-спектрометрии и может быть использовано для создания масс-спектрометров типа трехмерной ионной ловушки с высокой разрешающей способностью и чувствительностью. Технический результат - чувствительности и достоверности анализа масс-спектрометра. В процессе...
Тип: Изобретение
Номер охранного документа: 0002650497
Дата охранного документа: 16.04.2018
Показаны записи 31-40 из 43.
13.02.2018
№218.016.25a3

Вычислитель для подавления помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002642808
Дата охранного документа: 26.01.2018
04.04.2018
№218.016.342a

Микрофокусная рентгеновская трубка

Изобретение относится к прецизионной контрольно-измерительной технике нового поколения, и предназначено для улучшения аналитических, эксплуатационных и потребительских характеристик рентгеновского технологического и исследовательского оборудования, и может быть использовано в установках...
Тип: Изобретение
Номер охранного документа: 0002645749
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.360c

Вычислитель для режекторной фильтрации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002646330
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3753

Способ формирования изображений объектов в радиометре с двумя антеннами

Изобретение относится к пассивным радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра с двумя антеннами, принимающими сигналы в двух частотных диапазонах. Достигаемый технический результат – повышение пространственного разрешения изображения в первой...
Тип: Изобретение
Номер охранного документа: 0002646434
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.42d2

Электронный теодолит с блоком дистанционной оперативной обработки измерительной информации для измерения угловых координат и дальности

Изобретение относится к технике измерений, может использоваться в геодезическом приборостроении и предназначено для измерения наряду с угловыми координатами расстояния между теодолитом и объектом наблюдения. Сущность изобретения характеризуется тем, что в известный из уровня техники электронный...
Тип: Изобретение
Номер охранного документа: 0002649419
Дата охранного документа: 03.04.2018
09.06.2018
№218.016.6049

Способ увеличения скорости электрического ветра

Способ увеличения скорости электрического ветра и устройство для его осуществления относятся к области создания газовых потоков и могут быть использованы в системах продувки, вентиляции, очистки воздуха от пылевых, бактериальных и химических загрязнений в производственных помещениях, а также...
Тип: Изобретение
Номер охранного документа: 0002656970
Дата охранного документа: 07.06.2018
24.01.2019
№219.016.b352

Впускной модуль газосепаратора погружного электроцентробежного насоса

Изобретение относится к нефтяному машиностроению, а именно к устройствам газосепараторов погружных электроцентробежных насосов, предназначенных для подъема газожидкостной смеси. Впускной модуль газосепаратора состоит из корпуса в виде цилиндра с отверстиями для приема газожидкостной смеси,...
Тип: Изобретение
Номер охранного документа: 0002677953
Дата охранного документа: 22.01.2019
17.04.2019
№219.017.1634

Промышленный контроллер

Устройство относится к измерительной технике и предназначено для автоматизации работ по сбору и обработке информации. Технический результат заключается в повышении надежности контроллера. Он достигается тем, что предложен контроллер, содержащий модуль питания, модуль вычислительный, модули...
Тип: Изобретение
Номер охранного документа: 0002429524
Дата охранного документа: 20.09.2011
18.10.2019
№219.017.d7e7

Способ прогнозирования течения механической желтухи неопухолевого генеза

Изобретение относится к области медицины, а именно гастроэнтерологии и анестезиологии-реаниматологии, и может быть использовано для прогнозирования течения механической желтухи неопухолевого генеза (доброкачественного происхождения). В способе прогнозирования течения механической желтухи...
Тип: Изобретение
Номер охранного документа: 0002703289
Дата охранного документа: 16.10.2019
19.06.2020
№220.018.27da

Способ прогнозирования интенсивности системной воспалительной реакции при ургентных болезнях живота

Изобретение относится к клинической медицине, а именно к хирургии и анестезиологии-реаниматологии, и может быть использовано для прогнозирования развития синдрома системной воспалительной реакции. Способ прогнозирования интенсивности системной воспалительной реакции при ургентных болезнях...
Тип: Изобретение
Номер охранного документа: 0002723736
Дата охранного документа: 17.06.2020
+ добавить свой РИД