×
25.08.2017
217.015.d0ba

Результат интеллектуальной деятельности: СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного напряжения на электроды, расположенные рядами параллельно потоку газа, при этом последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов. Устройство для увеличения скорости ионного ветра, характеризующееся тем, что источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов. Техническим результатом предлагаемого изобретения является увеличение скорости электрического ветра и увеличение КПД. 2 н.п. ф-лы, 5 ил.

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д.

Известно устройство для вентиляции воздуха, содержащее коронирующие и осадительные электроды, расположенные параллельно потоку газа, подключенные к источнику высокого напряжения, одна сторона коронирующего электрода является коронирующей в направлении воздушного потока, при этом осадительные электроды выполнены в виде сплошных пластин [1].

Недостатками этого устройства являются: большая потребляемая мощность, необходимость увеличение габаритов электродной системы для увеличения максимальной скорости электрического ветра, малая скорость электрического ветра.

Известен вентилятор-озонатор, включающий корпус, внутри которого расположены несколько рядов пластинчатых электродов, выполненных в аэродинамически профилированном виде с прикрепленными острийными излучателями [2].

Недостатками этого устройства являются сложная конструкция электродов, выполненных в аэродинамически профилированном виде, где к заостренному ребру каждой пластины прикреплены стержневые острийные излучатели, и низкая скорость воздушного потока (не более 1,08 м/с).

Наиболее близким по технической сущности и достигаемому эффекту является способ увеличения скорости электрического ветра, заключающийся в подаче высокого напряжения на электроды с излучателями, расположенными рядами параллельно потоку газа [3].

Недостатками данного способа являются большие габариты электродной системы, т.к. для увеличения скорости электрического ветра увеличивается число ступеней ускоряющих электродов и мощность, невысокий КПД.

Основным техническим результатом предлагаемого изобретения является увеличение скорости электрического ветра и увеличение КПД.

Технический результат достигается тем, что последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов, при этом источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов.

На фиг. 1 приведена схема устройства для комбинированного питания постоянным и импульсным напряжением, где ГВИ - генератор высоковольтных импульсов, ЭС - электродная система, ИПН - источник постоянного напряжения. Комбинированное напряжение питания - это такой вид напряжения, когда на постоянное напряжение накладывается импульсное. На фиг. 2 показана форма и параметры комбинированного напряжения. На фиг. 3 и фиг. 4 приведены экспериментальные зависимости скорости воздушного потока от параметров комбинированного напряжения для одноступенчатой электродной системы с межэлектродным расстоянием d=15 мм. На фиг. 5 представлены графики зависимости КПД от скорости воздушного потока для различных видов питающего напряжения.

Примером конкретной реализации заявляемого способа увеличения скорости электрического ветра является устройство, представленное на фиг. 1. Устройство содержит электродную систему (ЭС) и источник питания. Источник питания состоит из ИПН и генератора высоковольтных импульсов ГВИ, на выходе которого стоит повышающий трансформатор Т1 с коэффициентом трансформации n.

Токоограничивающий элемент R1, в качестве которого может использоваться резистор или индуктивность, ограничивает ток при возникновении искрового пробоя в электродной системе (ЭС) и защищает ИПН от короткого замыкания. Разделительный конденсатор С1 должен иметь достаточную емкость, чтобы передавать импульс в нагрузку без искажения. Для устранения взаимного влияния ГВИ и ИПН может устанавливаться последовательно с R1 высоковольтный диод.

Конструкция электродной системы (ЭС) состоит из нескольких рядов пластинчатых электродов, расположенных на расстоянии d друг от друга. Коронирующие стороны всех электродов расположены в одном направлении, что обеспечивает генерацию однонаправленного потока воздуха.

Устройство работает следующим образом. На соседние ряды электродов подается напряжение от ИПН через R1, и параллельно им, через конденсатор С1, прикладывается импульсное напряжение от ГВИ, определенной полярности, чтобы происходило сложение постоянного напряжения от ИПН и импульсного - от ГВИ (фиг. 1).

Постоянное напряжение, поступающее с ИПН, заряжает конденсатор С1 до напряжения U2, которое прикладывается к электродной системе ЭС. При подаче импульса с ГВИ через первичную обмотку трансформатора Т1 начинает протекать ток. Возникшее напряжение на вторичной обмотке имеет такую полярность, что складывается с напряжением на конденсаторе (фиг. 2). В схеме фиг. 1 показан случай, когда постоянное и импульсное напряжение имеют положительную полярность.

Наличие постоянного напряжения обеспечивает стационарное распределение электрического поля в газоразрядном промежутке d, за счет чего происходит перемещение образовавшихся ионов. Импульсное напряжение приводит к увеличению количества ионов и вследствие малой длительности не оказывает существенное влияние на скорость ионов.

За счет коротких импульсов напряжения (tu<<Т) большой амплитуды происходит увеличение количества ионов, что приводит к увеличению работы, производимой полем по перемещению заряда W=q⋅U, где q - суммарный заряд ионов в промежутке между соседними рядами электродов; U - разность потенциалов газоразрядного промежутка (d). Заряд однозарядных ионов зависит от количества и находится по формуле: q=e⋅N, где е - величина элементарного заряда; N - количество ионов. Ионы, ускоренные в электрическом поле, сталкиваясь с нейтральными молекулами и атомами воздуха, передают им свою кинетическую энергию. Таким образом, чем больше заряд, тем большую работу совершает поле и тем больше энергии передается нейтральным молекулам и атомам воздуха и тем больше скорости электрического ветра.

Экспериментально было установлено (фиг. 3), что увеличение скорости воздушного потока происходит при увеличении частоты следование импульсов в диапазоне от 0 до 30 кГц.

В отличие от прототипа, где электродная система питается только постоянным напряжением в предлагаемом устройстве, за счет использования комбинированного напряжения, можно повысить максимальную скорость электрического ветра, не изменяя конфигурацию электродной системы (без добавления дополнительных ускоряющих ступеней).

Вследствие нелинейной вольт-амперной характеристики коронного разряда, при напряжениях питания, близких к предпробойным, происходит резкое снижение КПД, т.к. с увеличением напряжения потребляемая мощность возрастает быстрее, чем увеличивается скорость электрического ветра. Поэтому наиболее выгодно питать электродную систему комбинированным напряжением при значении постоянного напряжения ниже предпробойного, а амплитудой импульсного напряжения и частотой - регулировать скорость воздушного потока.

Проведенные эксперименты показали, что скорость электрического ветра не изменяется при увеличении длительности импульсного напряжения в диапазоне от 250 нс до 2 мкс, возрастает только потребляемая мощность импульсного генератора. Минимальная длительность была ограничена возможностями генератора.

Увеличение частоты импульсов приводит к увеличению скорости электрического ветра (фиг. 3). Однако при частоте импульсов напряжения более 30 кГц происходит дальнейший рост потребляемой мощности, а скорость воздушного потока остается неизменной, что приводит к снижению КПД устройства.

На фиг. 4 представлены экспериментальные зависимости скорости электрического ветра от амплитуды импульсного напряжения (частота импульсов во всех случаях 15 кГц), для различных значений постоянного напряжения. С увеличением амплитуды импульсов происходит увеличение скорости воздушного потока, при любом значении постоянного напряжения.

На фиг. 5 показаны зависимости КПД от скорости воздушного потока для различных видов питающего напряжения: только постоянное напряжение, комбинированное для двух случаев. Скорость воздушного потока в первом случае увеличивается за счет увеличения постоянного напряжения. В случаях с комбинированным питанием - устанавливалось значение постоянного напряжения 10 кВ и 15кВ и скорость увеличивалась за счет увеличения амплитуды импульсного напряжения при фиксированной частоте 15 кГц.

КПД определялось как отношение энергии воздушного потока к энергии, вводимой в коронный разряд. Из фиг. 5 видно, что КПД больше у устройства, питающегося комбинированным напряжением, и увеличивается с увеличением амплитуды импульсного напряжения.

Кроме того, комбинированное питание позволяет увеличить надежность устройства за счет того, что отсутствуют искровые пробои газоразрядного промежутка электродной системы при изменении параметров внешней среды: влажность, давление, запыленность, наличие аэрозольных частиц. Для этого необходимо установить минимальный уровень постоянного напряжения, при котором начинает устойчиво гореть коронный разряд, а амплитудой импульсного напряжения задавать скорость воздушного потока. Вследствие малой длительности импульсов напряжения - пробой промежутка не наступает.

Список литературы

1. Патент №2492394 С2, кл. F24F 3/00.

2. Патент №2121115 С1, кл. F24F 3/16.

3. Патент №2313732 С2, кл. F24F 3/16.


СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 96.
26.08.2017
№217.015.de01

Автокомпенсатор доплеровских сдвигов фазы помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Предложен автокомпенсатор доплеровских сдвигов фазы помех, содержащий блок оценивания фазы, первый блок задержки, первый и второй блоки комплексного умножения, блок...
Тип: Изобретение
Номер охранного документа: 0002624795
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.de06

Способ обработки последовательности изображений для автоматического обнаружения танкера и оценивания его траекторных параметров при дозаправке в воздухе на фоне звездного неба

Изобретение относится к области цифровой обработки изображений и может быть использовано в бортовых системах технического зрения, предназначенных для дозаправки в воздухе летательных аппаратов, в том числе и беспилотных, методом штанга-конус на фоне звездного неба. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002624828
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.df5a

Способ определения знака разности частот и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в дискретных системах автоматики для получения информации о знаке разности частот двух импульсных колебаний. Технический результат - повышение быстродействия. Способ определения знака разности частот основан на анализе знака и...
Тип: Изобретение
Номер охранного документа: 0002625054
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df6a

Способ формирования периодических двуполярных колебаний с заданным фазовым сдвигом и устройство для его реализации

Изобретение относится к области измерительной техники и может быть использовано для формирования периодических колебаний с заданным фазовым сдвигом. Достигаемый технический результат - реализация регулируемого фазового сдвига двуполярных колебаний одинаковых частот в диапазоне [0, 2] с...
Тип: Изобретение
Номер охранного документа: 0002625047
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e15e

Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля импульсного электронного пучка

Изобретение относится к датчикам для измерения тока электронного пучка и может найти применение в исследовательских и промышленных установках. Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля плотности тока импульсного электронного пучка содержит нижнюю...
Тип: Изобретение
Номер охранного документа: 0002625601
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.edba

Вычислитель для компенсации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628907
Дата охранного документа: 22.08.2017
26.08.2017
№217.015.ee51

Вычислитель для режектирования помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628904
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.00bd

Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей...
Тип: Изобретение
Номер охранного документа: 0002629713
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00ce

Вычислитель доплеровской скорости движения объекта

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности измерения скорости за счет меньшего числа функциональных преобразований и расширении диапазона однозначно измеряемой доплеровской скорости. Вычислитель доплеровской скорости движения объекта...
Тип: Изобретение
Номер охранного документа: 0002629642
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.010c

Фазометр когерентных неэквидистантных импульсов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской...
Тип: Изобретение
Номер охранного документа: 0002629710
Дата охранного документа: 31.08.2017
Показаны записи 11-20 из 43.
26.08.2017
№217.015.df5a

Способ определения знака разности частот и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в дискретных системах автоматики для получения информации о знаке разности частот двух импульсных колебаний. Технический результат - повышение быстродействия. Способ определения знака разности частот основан на анализе знака и...
Тип: Изобретение
Номер охранного документа: 0002625054
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df6a

Способ формирования периодических двуполярных колебаний с заданным фазовым сдвигом и устройство для его реализации

Изобретение относится к области измерительной техники и может быть использовано для формирования периодических колебаний с заданным фазовым сдвигом. Достигаемый технический результат - реализация регулируемого фазового сдвига двуполярных колебаний одинаковых частот в диапазоне [0, 2] с...
Тип: Изобретение
Номер охранного документа: 0002625047
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e15e

Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля импульсного электронного пучка

Изобретение относится к датчикам для измерения тока электронного пучка и может найти применение в исследовательских и промышленных установках. Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля плотности тока импульсного электронного пучка содержит нижнюю...
Тип: Изобретение
Номер охранного документа: 0002625601
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.edba

Вычислитель для компенсации помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628907
Дата охранного документа: 22.08.2017
26.08.2017
№217.015.ee51

Вычислитель для режектирования помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628904
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.00bd

Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей...
Тип: Изобретение
Номер охранного документа: 0002629713
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00ce

Вычислитель доплеровской скорости движения объекта

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности измерения скорости за счет меньшего числа функциональных преобразований и расширении диапазона однозначно измеряемой доплеровской скорости. Вычислитель доплеровской скорости движения объекта...
Тип: Изобретение
Номер охранного документа: 0002629642
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.010c

Фазометр когерентных неэквидистантных импульсов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской...
Тип: Изобретение
Номер охранного документа: 0002629710
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
+ добавить свой РИД