×
25.08.2017
217.015.d032

Результат интеллектуальной деятельности: Способ обеспечения посадки вертолета

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения и может найти применение для автоматизации процесса измерения параметров положения вертолета на посадке и оценить пригодность подстилающей земной поверхности для безопасной посадки в автоматическом режиме. Технический результат – повышение безопасности полетов. Для этого осуществляют излучение по меньшей мере четырех разнесенных искусственных световых контрастов, создаваемых бортовыми лазерными узконаправленными источниками излучения, установленными на стабилизированной платформе, регистрируют посредством двух разнесенных цифровых фотокамер, установленных на стабилизированной платформе, определяют координаты изображений искусственных световых контрастов на фотоматрицах, вычисляют их координаты в системе координат, связанной с стабилизированной платформой. Вычисляют высоту вертолета, углы ориентации земной поверхности относительно горизонта и определяют углы, характеризующие неровность поверхности в окрестности точки посадки, что обеспечивает обоснованный выбор места для безопасной посадки. 2 ил.

Изобретение относится к навигации и может быть использовано для автоматического управления посадкой вертолета на неподготовленную площадку, лишенную естественных оптических контрастов.

Известен способ, описанный в работе «Системы навигации. Олихов И.М., Косовский Л.А. / Журнал: Электроника - Наука, Технология, Бизнес, 1999, №3», определения положения летательного аппарата (ЛА) в пространстве с помощью мобильной лазерной системы, который состоит в формировании трех цветовых зон в окрестности посадочной траектории и визуальном восприятии летчиком излучения в заданной длине волны, по которой определяется положение ЛА относительно створа взлетно-посадочной полосы (ВПП). Каждый из лазерных маяков создает две непересекающихся (прилегающих) цветовые зоны. Излучение маяков направляют так, чтобы линии прилегания цветовых зон первого и второго маяков были параллельны оси ВПП, при этом формируется центральная зона зеленого цвета - створная полоса, и две боковых зоны желтого и красного цветов соответственно.

Недостатками этого способа являются:

низкая информативность, проявляющаяся в измерении только одного параметра - бокового отклонения от оси ВПП (либо вертикального от глиссады);

низкая точность, обусловленная неопределенным положением ЛА в пределах одной цветовой зоны излучения;

визуальная оценка летчиком положения ЛА, что приводит к необходимости участия человека в контуре управления, при этом автоматическая посадка невозможна.

Известен способ определения местоположения и углов ориентации летательного аппарата относительно ВПП с помощью одного оптико-локационного блока (ОЛБ), установленного на борту ЛА, и системы трех лазерных маяков (световых контрастов), описанный в патенте на изобретение RU №2347240, МПК G01S 17/93, опубл. 20.02.2009. Посредством обработки оцифрованных изображений, снимаемых с фоточувствительной матрицы ОЛБ, определяют координаты изображений лазерных маяков на фоточувствительной матрице, а затем вычисляют координаты и угловое положение ЛА относительно ВПП.

Недостатком способа является необходимость использования световых контрастов, установленных на аэродромах, что не обеспечивает автоматическую посадку на неподготовленную площадку, чем снижается безопасность полетов.

Технической задачей изобретения является измерение положения вертолета относительно земной поверхности, а также определение наклона и неровности земной поверхности в окрестности точки посадки. Технический результат при использовании заявляемого изобретения заключается в повышении безопасности полетов путем обеспечения автоматической посадки, что достигается увеличением информативности определения местоположения вертолета относительно земной поверхности за счет использования двух цифровых фотокамер и по меньшей мере четырех узконаправленных лазерных источников излучения, установленных на стабилизированной в горизонте платформе, и вычислителя, алгоритм которого не содержит упрощений, приводящих к методическим погрешностям измерений.

Технический результат изобретения достигается тем, что в способе определения параметров положения вертолета при посадке, основанном на регистрации излучения наземных световых контрастов, обработке их оцифрованного изображения и вычислении координат местоположения летательного аппарата, на поверхности земли формируют искусственные световые контрасты путем облучения, по меньшей мере, четырьмя узконаправленными лазерными источниками излучения, установленными на платформе, стабилизированной в горизонтальной плоскости, при этом луч одного из источников вертикален, а три других образуют грани правильной пирамиды с осью симметрии, совпадающей с вертикалью, регистрируют излучение каждого из искусственных световых контрастов посредством двух разнесенных цифровых фотокамер, установленных на стабилизированной платформе, осуществляют обработку оцифрованных изображений, снимаемых с фоточувствительных матриц цифровых фотокамер для определения координат изображений искусственных световых контрастов, вычисляют координаты искусственных световых контрастов в системе координат, связанной с стабилизированной платформой, вычисляют углы ориентации земной поверхности относительно горизонтальной системы координат, вычисляют высоту полета вертолета, определяют углы, характеризующие неровность земной поверхности, оценивают горизонтальность и неровность земной поверхности, делают вывод о возможности посадки и осуществляют посадку вертолета.

Сущность изобретения поясняется фиг. 1, где представлено взаимное расположение сформированных на поверхности земли (ПЗ) искусственных световых контрастов, горизонтальной системы координат OXYZ, связанной с стабилизированной в горизонте платформой, установленной на борту вертолета, системы координат O(1)X(1)Y(1)Z(1), связанной с ПЗ.

Сущность изобретения обусловлена выполнением следующих действий:

определение координат изображений искусственных световых контрастов на фоточувствительных матрицах двух цифровых фотокамер;

вычисление координат искусственных световых контрастов в системе координат, связанной с стабилизированной платформой;

вычисление значений углов ориентации земной поверхности относительно горизонтальной системы координат;

вычисление высоты полета вертолета;

вычисление углов, характеризующих неровность земной поверхности, величина которых позволяет обоснованно принять решение о возможности (невозможности) посадки;

выполнение автоматической посадки по вычисленным сигналам высоты h и углов υ, β.

На фиг. 1 показана схема измерения положения вертолета над земной поверхностью, где обозначены:

ФК1, ФК2 - фотокамеры системы технического зрения (СТЗ);

OXYZ - горизонтальная система координат, связанная с стабилизированной платформой;

S1, S2, S3, S4 - четыре искусственных световых контраста на поверхности земли (ПЗ);

O(1)X(1)Y(1)Z(1) - система координат, связанная с ПЗ, плоскость O(1)Х(1)Z(1) проходит через точки S1, S2, S3;

α1, α2, α3 - углы, описывающие неровность между поверхностью земли (фиг. 1), α1 - угол между вектором и плоскостью ПЗ, α2 - угол между вектором и плоскостью ПЗ, α3 - угол между вектором и плоскостью ПЗ.

На фиг. 2 показано угловое положение земной поверхности относительно стабилизированной платформы, где обозначены:

угол β - разворота плоскости ПЗ вокруг оси OY;

угол υ - разворота плоскости ПЗ вокруг оси OZ(1).

Способ реализуется следующим образом.

Поскольку система технического зрения, работающая в пассивном режиме, не может обеспечить измерение положения ЛА относительно земной поверхности типа заснеженное (ледяное, песчаное) поле без естественных контрастов, а также в плохих погодных или ночных условиях, поэтому для обеспечения работоспособности системы в любых условиях необходимо дополнить СТЗ системой из по меньшей мере четырех узконаправленных лазерных излучателей (фиг. 1), расположенных в точке О, формирующих на земной поверхности четыре разнесенных в зависимости от высоты, наклона и неровности поверхности искусственных световых пятен (контрастов) S1, S2, S3, S4.

Решение задачи измерения высоты вертолета, углов наклона земной поверхности относительно местной вертикали и углов, характеризующих кривизну поверхности (неровность) в окрестности точки посадки, достигается путем использования искусственных световых контрастов, сформированных посредством четырех бортовых лазерных источников излучения вместо естественных оптически контрастных точек на земной поверхности.

Поскольку измерение параметров положения вертолета по оптическим контрастам, связанным с вертолетом, приведет к методическим погрешностям измерений, обусловленным его эволюциями, то используется стабилизация углового положения как системы лазерных источников излучения, так и системы технического зрения в горизонтальной плоскости, используя для этого двухрамочный карданов подвес, управляемый по сигналам угла крена и тангажа.

Направим лазерные излучатели таким образом, чтобы узконаправленные лучи OS1, OS2, OS3 совпали с гранями правильной треугольной пирамиды, а луч OS4 проходил по ее оси симметрии и совпадал с местной вертикалью за счет работы карданова подвеса. Чтобы изображения искусственных световых контрастных точек, образовавшихся на земной поверхности, всегда находились в поле зрения фотокамер СТЗ необходимо, чтобы выполнялось следующее условие θ<θфкфк - угол поля зрения фотокамеры, θ - угол отклонения лучей OS1, OS2, OS3 от вертикали).

Измерения координат контрастных точек выполняются посредством СТЗ

где Xλυ, Zλυ - координаты изображения контрастной точки на первой и второй фоточувствительных матрицах, λ=1, 2 - номер фоточувствительной матрицы, υ=1…4 - номер точки Sυ, В - расстояние между центрами фоточувствительных матриц, F - фокусное расстояние объективов телекамер.

Чтобы получить аналитические выражения, описывающие взаимное положение системы координат OXYZ и плоскости ПЗ, введем в рассмотрение систему координат O(1)X(1)Y(1)Z(1), плоскость O(1)X(1)Z(1) которой совпадает с плоскостью ПЗ. Ось O(1)Z(1) горизонтальна, а O(1)Х(1) совпадает с линией наискорейшего спуска. Опишем положение вектора нормали к плоскости ПЗ посредством угла β - разворота плоскости ПЗ вокруг оси OY и угла υ - разворота плоскости ПЗ вокруг оси OZ(1). Таким образом, взаимное положение систем координат O(1)X(1)Y(1)Z(1) и OXYZ описывается матрицей направляющих косинусов следующего вида

где орты систем координат связаны известным соотношением

Вектор нормали N к плоскости S1S2S3 в системе координат OXYZ записывают в виде векторного произведения сторон S1S2 и S1S3 треугольника.

где Nx=(y2-yl)(z3-z1)-(y3-y1)(z2-z1), Ny=(z2-z1)(x3-x1)-(х2-x1)(z3-zl), Nz=(x2-x1)(y3-y1)-(y2-y1)(x3-x1), а его модуль .

С помощью скалярного произведения единичных векторов определяют наклон υ земной поверхности в точке посадки

где

Из соотношений (2) и (3) выразим вектор j(1)=-isinυcosβ+jcosυ+ksinυsinβ. Учитывая, что

получим

, а

Окончательные выражения для углов β и υ имеют следующий вид

Оценивают горизонтальность земной поверхности путем проверки неравенства

где υзад - допустимое значение наклона земной поверхности, при котором обеспечивается безопасная посадка.

Для измерения высоты полета ЛА определяют расстояние до точки S4, это связано с тем, что система лазерных излучателей стабилизируется в горизонте по углу крена и тангажа, поэтому линия OS4 совпадает с местной вертикалью

Для определения углов α1=<S4S1O(1), α2=<S4S2O(1), α3=<S4S3O(1) необходимо найти скалярные произведения j(1)⋅S1S4, j(1)⋅S2S4, j(1)⋅S3S4,

Выразим орт j(1) из соотношения (4)

Векторы S1S4, S2S4, S3S4 выразим следующим образом

SlS4=i(xl-x4)+j(y1-y4)+k(z1-z4),

S2S4=i(x2-x4)+j(y2-y4)+k(z2-z4),

S3S4=i(x3-x4)+j(y3-y4)+k(z3-z4).

Выражают углы α1, α2, α3,

Разброс значений этих углов позволяет оценивать неровность земной поверхности в пределах треугольника S1S2S3 путем проверки неравенств

где αзад - допустимое значение угла α, обеспечивающее безопасную посадку.

При выполнении неравенств делают вывод о возможности посадки.

Таким образом, посадка ЛА (вертолета) в автоматическом режиме должна осуществляться по сигналам h, β:

сигнал высоты используется для снижения до h=0;

сигнал β (угол ориентации линии OO1 наискорейшего спуска земной поверхности относительно продольной оси ЛА), при посадке на наклонную поверхность при υ≠0 вертолет целесообразно расположить вдоль линии наискорейшего спуска т.е β→0 (фиг. 3). При υ=0 сигнал β теряет смысл.

Измерение координат оптически контрастных точек при использовании инфракрасного диапазона лазерных излучателей в одном из окон прозрачности атмосферы (например 1.3 мкм или 1.55 мкм) посредством стереопары ФК1 и ФК2 обеспечивает определение положения ЛА как в сложных метеоусловиях, так и в любое время суток, не демаскируя ЛА в видимой части спектра.

Способ обеспечения посадки вертолета, основанный на регистрации излучения световых контрастов, обработке их оцифрованного изображения и вычислении координат местоположения летательного аппарата (ЛА), отличающийся тем, что на поверхности земли формируют искусственные световые контрасты путем облучения, по меньшей мере, четырьмя узконаправленными лазерными источниками излучения, установленными на платформе, стабилизированной в горизонтальной плоскости, при этом луч одного из источников вертикален, а три других образуют грани правильной пирамиды с осью симметрии, совпадающей с вертикалью, регистрируют излучение каждого из искусственных световых контрастов посредством двух разнесенных цифровых фотокамер, установленных на стабилизированной платформе, осуществляют обработку оцифрованных изображений, снимаемых с фоточувствительных матриц цифровых фотокамер, для определения координат изображений искусственных световых контрастов, вычисляют координаты искусственных световых контрастов в системе координат, связанной с стабилизированной платформой, вычисляют углы ориентации земной поверхности относительно горизонтальной системы координат, вычисляют высоту полета вертолета, определяют углы, характеризующие неровность земной поверхности, оценивают горизонтальность и неровность земной поверхности, делают вывод о возможности посадки и осуществляют посадку вертолета.
Способ обеспечения посадки вертолета
Способ обеспечения посадки вертолета
Источник поступления информации: Роспатент

Показаны записи 191-200 из 249.
05.02.2020
№220.017.fe82

Многослойная диэлектрическая тороидальная антенна

Изобретение относится к радиотехнике, в частности к антенной технике, и может быть использовано при создании малогабаритных антенн средств связи и радиолокации сантиметрового и миллиметрового диапазонов волн, а также сканировании диаграммы направленности линзовой антенны. Техническими...
Тип: Изобретение
Номер охранного документа: 0002713034
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fea0

Устройство для поглощения электромагнитных волн

Использование: для защиты от электромагнитного излучения. Сущность изобретения заключается в том, что устройство выполнено в виде ячеистой основы, образованной скрепленными друг с другом шнурами 1, изготовленными из диэлектрического материала, на шнуры намотаны поглощающие элементы в виде...
Тип: Изобретение
Номер охранного документа: 0002713056
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.fec4

Устройство для определения координат подвижного объекта с использованием магнитного поля

Изобретение относится к области измерительной техники, в частности к средствам определения координат подвижного объекта, и может быть использовано в системах посадки летательных аппаратов, в строительстве для направленного бурения скважин, в системах навигации подвижных объектов, в медицине для...
Тип: Изобретение
Номер охранного документа: 0002713456
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.0020

Устройство структурной адаптации системы связи

Изобретение относится к электросвязи, в частности к устройствам оценки эффективности информационного обмена в системе связи со сменой ее структуры. Технический результат - поддержание требуемой эффективности информационного обмена системы связи в соответствии с заданным пороговым значением КПД...
Тип: Изобретение
Номер охранного документа: 0002713616
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.0037

Способ структурной адаптации системы связи

Изобретение относится к электросвязи. Технический результат заключается в расширении арсенала средств. Для основной структуры системы связи в интервале ее эффективной работы, определяемом пороговым значением КПД передачи информации системы связи η, находят резервную структуру, удовлетворяющую...
Тип: Изобретение
Номер охранного документа: 0002713329
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.00c1

Крылатая ракета и способ ее боевого применения

Группа изобретений относится к области ракетного вооружения и, в частности, к управляемым ракетам, применяемым по наземным и надводным целям. Технический результат - повышение точности наведения боевых элементов ракеты. Крылатая ракета содержит корпус, крыло с органами управления по крену,...
Тип: Изобретение
Номер охранного документа: 0002713546
Дата охранного документа: 05.02.2020
17.02.2020
№220.018.032b

Устройство для эвакуации самолетов

Изобретение относится к транспортировке воздушных судов. Устройство для эвакуации самолетов содержит тягач (9), тележку, подъемный механизм. Подъемный механизм выполнен в виде домкратов (10), на которых закреплена подъемная платформа (11) с размещенным на ней вращающимся в горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002714337
Дата охранного документа: 14.02.2020
17.02.2020
№220.018.0362

Способ формирования контурного изображения

Изобретение относится к технологиям обработки изображений и может быть использовано в системах технического зрения. Технический результат заключается в снижении чувствительности к шумам за счет уменьшения размерности формируемого изображения. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002714381
Дата охранного документа: 14.02.2020
20.02.2020
№220.018.03f1

Способ самонаведения на наземную цель

Изобретение относится к области управления летательными аппаратами и может быть использовано для наведения на наземную цель по ее радиоизлучению. Способ самонаведения на наземную цель включает двухмерное пеленгование цели, определение рассогласования между направлением на нее и направлением...
Тип: Изобретение
Номер охранного документа: 0002714531
Дата охранного документа: 18.02.2020
29.02.2020
№220.018.0790

Устройство имитации вибрирующих объектов

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники (ВВТ) от оптико-электронных средств разведки. Оно может быть использовано для имитации вибрационных колебаний поверхности ложных целей и макетов ВВТ при их разведке лазерными локационными станциями, а также...
Тип: Изобретение
Номер охранного документа: 0002715372
Дата охранного документа: 26.02.2020
Показаны записи 51-52 из 52.
21.11.2019
№219.017.e478

Способ определения координат летательного аппарата относительно взлетно-посадочной полосы

Изобретение относится к навигации и может быть использовано для автоматического управления посадкой летательного аппарата, коррекции инерциальных навигационных систем на стартовой позиции в процессе взлета. Способ определения координат летательного аппарата относительно взлетно-посадочной...
Тип: Изобретение
Номер охранного документа: 0002706443
Дата охранного документа: 19.11.2019
01.07.2020
№220.018.2d76

Способ логического парного мониторинга неоднородных избыточных технических систем и устройство для его реализации

Изобретение относится к вычислительной технике. Технический результат заключается в повышении достоверности диагностирования технического состояния комплекса оборудования с управляемой избыточностью. Устройство содержит пару функциональных узлов, каждый из которых состоит из функционального и...
Тип: Изобретение
Номер охранного документа: 0002724973
Дата охранного документа: 29.06.2020
+ добавить свой РИД