×
25.08.2017
217.015.cee9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метеорологии и касается способа определения прозрачности атмосферы по фотометрии звезд. Способ включает в себя определение величины относительной мощности излучения двух звезд. При измерениях используют прибор с зарядовой связью. Величину относительной мощности излучения определяют рассчитывая яркость в уровнях серого полученного изображения путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба. Одновременно с этим измеряют углы между горизонтом и звездами А и В, по которым вычисляют атмосферную массу к каждой из двух звезд. Коэффициент прозрачности атмосферы определяют по выражению: где I, I - известные заатмосферные мощности звезд А и В; S, S - рассчитанные в эксперименте относительные мощности излучения звезд; М, М – атмосферные массы к звездам А и В. Технический результат заключается в упрощении способа, сокращении времени измерений и обеспечении возможности проведения измерений в любое время суток. 2 ил.

Изобретение относится к метеорологии, фотометрии и спектрофотометрии звезд и может быть использовано для получения информации о прозрачности атмосферы по звездам на вертикальных и наклонных трассах.

Из существующего уровня техники известно несколько различных способов определения прозрачности атмосферы по звездам, физическая сущность которых основана на увеличении поглощения атмосферы с увеличением атмосферной массы на трассе наблюдения звезд. К подобным способам относятся: метод Бугера, метод пары звезд, метод Никонова (метод контрольных звезд), метод Сарычева (А.В. Миронов. Основы астрофотометрии. Практические основы фотометрии и спектрофотометрии звезд.//М. Физматлит, ISBN 978-5-9221-0935-2, 2008 г.). Рассмотрим каждый из названных методов в отдельности.

Способ определения прозрачности атмосферы по методу Бугера (стр. 224) основан на наблюдении в монохроматическом свете с длиной волны λ в два момента времени Τ1 и Т2 при воздушных массах, равных соответственно М(z1) и M(z2). Разность наблюденных звездных величин, отнесенная к разности соответствующих воздушных масс, даст бугеровский коэффициент атмосферной экстинкции (прозрачность в зенитном направлении).

Способ определения прозрачности атмосферы по методу Никонова (стр. 228) заключается в том, что выбирают и многократно измеряют одну (специально выбранную стандартную) звезду, которую называют экстинкционной, а в промежутках между ее наблюдениями - измеряют программные (контрольные) звезды.

Метод Сарычева (стр. 231) заключается в том, что за короткий промежуток времени изменение прозрачности представляют прямолинейным отрезком. Таким коротким промежутком времени считается интервал, в котором произведено три последовательных измерений различных звезд. Принимается, что за этот промежуток времени можно считать коэффициент экстинкции (прозрачности) линейно изменяющимся со временем.

Наиболее близким аналогом из них является способ определения прозрачности атмосферы по парам звезд (стр. 227), заключающийся в том, что осуществляют последовательное наведение телескопа на две звезды, находящиеся на различных зенитных расстояниях с определением их уровня относительной мощности излучения путем регистрации потока света в виде количества фотоэлектронов, приходящего через атмосферу. При регистрации используют фотоэлектронный умножитель (ФЭУ). Полученные при этом данные используют для определения коэффициента прозрачности атмосферы (или - прозрачность в зенитном направлении) из соотношения внеатмосферных величин блеска звезд к их атмосферным массам.

Все приведенные выше способы имеют следующие недостатки:

- не работают в дневное время суток, т.к. в дневных условиях яркий фон атмосферы приводит к насыщению ФЭУ,

- не работают в красной спектральной полосе,

- использование при регистрации ФЭУ не позволяет выделить изображение звезды на ярком фоне дневного неба,

- требуется достаточно большое время наблюдения и специальное местоположение с хорошим астроклиматом и вдали от населенных пунктов,

- сложность в эксплуатации, требующей использование узкоспециализированного сложного оборудования, громоздкого астрономического телескопа и участия нескольких высококвалифицированных специалистов.

Технический результат изобретения заключается в расширении функциональных возможностей за счет определения прозрачности атмосферы в любом месте, в любой спектральной полосе и в любое время суток за короткое время наблюдения и обработки. Кроме того, одновременно с этим обеспечивается простота в эксплуатации, компактность и мобильность, позволяющие осуществить оперативную перевозку и монтаж при изменении места испытаний.

Указанный технический результат достигается тем, что в способе определения прозрачности атмосферы по фотометрии звезд, заключающемся в том, что осуществляют последовательное наведение телескопа, по меньшей мере, на две звезды, находящиеся на различных зенитных расстояниях, определяют их величину относительной мощности излучения путем измерения потока света, приходящего от звезд через атмосферу, и полученные данные используют для определения коэффициента прозрачности атмосферы, новым является то, что при измерении используют прибор с зарядовой связью, на матрице которого получают изображение звезды, а величину относительной мощности излучения определяют рассчитывая яркость в уровнях серого полученного изображения путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба, одновременно с этим измеряют углы между горизонтом и звездами А и В, по которым вычисляют атмосферную массу к звезде и к звезде , а коэффициент прозрачности атмосферы Т0 рассчитывают по следующему выражению:

где Ia, Iв - известные заатмосферные мощности звезд А и В;

Sa, Sв - рассчитанные в эксперименте относительные мощности излучения звезд.

Использование при измерении прибора с зарядовой связью, на матрице которого получают изображение звезды, позволяет выделить изображение звезды на ярком фоне дневного неба за короткое время проведения измерений, что способствует реализации всесуточного контроля прозрачности атмосферы в любом месте и регистрации в красном спектральном диапазоне, а также обеспечивает простоту в эксплуатации, мобильность, и компактность.

Определение величины относительной мощности излучения по расчету яркости в уровнях серого полученного изображения путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба позволяет количественно определить относительную мощность излучения звезды для дальнейшего расчета коэффициента прозрачности, что также расширяет функциональные возможности устройства и обеспечивает простоту в эксплуатации.

Измерение углов между горизонтом и звездами А и В, по которым вычисляют атмосферную массу к звезде и к звезде , позволяет уменьшить время наведения регистрирующей аппаратуры на звезды и ускорить получение результата.

Определение коэффициента прозрачности атмосферы Т0 по выражению: где Ia, IB - известные заатмосферные мощности звезд; Sа, SB - рассчитанные в эксперименте относительные мощности излучения звезд, позволяет упростить расчеты и быстро получить текущую информацию по состоянию прозрачности атмосферы в различных областях небесной сферы, что также влияет на расширение функциональных возможностей устройства и обеспечение простоты в эксплуатации.

Реализация предлагаемого способа определения прозрачности атмосферы по фотометрии звезд схематично представлена на фиг. 1 и фиг. 2. На фиг. 1 приведена схема регистрации звезд. На фиг. 2 - схема расчета углов. Позициями на фигурах обозначены: 1 - телескоп; 2 - альт-азимутальная монтировка; 3 - штатив; 4 - прибор с зарядовой связью (далее - ПЗС-камера); 5 - персональный компьютер для записи изображений; 6 -персональный компьютер для управления монтировкой телескопа; 7 - угловая высота звезды А; 8 - угловая высота звезды В, 9 - точка наблюдения, 10 - зенит; А, В - звезды.

Схема включает в себя телескоп 1 с фокусом 1,325 м и диаметром 102 мм. Альт-азимутальная монтировка 2? установленная на штативе 3, выполнена с возможностью ручного и компьютерного управления 6, что позволяет выбирать и устанавливать любую угловую высоту точки наблюдения 9. ПЗС-камера 4 фирмы Watec-Wat-100 N с кремниевой матрицей SONY размером 795(гориз.)×596(вертик.) пикселей и размером одиночного пикселя 8.6 мкм×8,3 мкм размещена на выходе телескопа 1. На входе ПЗС-камеры 4 установлен светофильтр КС-19, выделяющий спектральный участок от λ=700 нм (коротковолновая граница красного фильтра КС-19) до λ=1000 нм (длинноволновая граница спектральной чувствительности кремниевой матрицы), а выход ПЗС-камеры - подключен к персональному компьютеру для записи изображений 5.

Работа способа осуществляется следующим образом. Для корректного наведения телескопа 1 с помощью персонального компьютера 6 необходимо сначала осуществить наведение и фокусировку по Полярной звезде, которая находится постоянно в одном угловом положении на небесной сфере. После наведения на звезду А телескоп 1 направляет поток света, приходящий от нее через атмосферу, и строит изображение звезды на матрице ПЗС-камеры 4. Затем с помощью персонального компьютера для записи изображений 5 осуществляют запись и вычисляют величину относительной мощности излучения звезды, которую определяют рассчитывая яркость в уровнях серого (далее у.с.) путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба.

Далее после наведения на звезду В аналогичным образом находим величину относительной мощности излучения, приходящего от звезды В.

Одновременно с этим измеряют углы между горизонтом и угловыми высотами звезд А и В (7, 8), по которым вычисляют атмосферную массу к звезде , и к звезде . Полученные данные используют для определения коэффициента прозрачности атмосферы в зенит (10) Т0, который рассчитывают по следующему выражению: где Ia, IB - известные величины заатмосферной мощности звезд А и В; Sa, SB - рассчитанные в эксперименте относительные мощности излучения звезд.

На предприятии проведены исследования и эксперименты по представленному способу определения прозрачности атмосферы по фотометрии звезд с достижением вышеуказанного технического результата. В ходе измерений в спектральном диапазоне от λ=700 нм до λ=1000 нм было определено значение коэффициента прозрачности атмосферы в зенитном направлении: Т0, которое составило:

- в ночных условиях - Т0=95% (5 июня 2015 г. ) - по 5 парам звезд,

- в дневных условиях - Т0=78% (8 июня 2015 г. ) - по 4 парам звезд.

Таким образом, заявляемое изобретение может быть реализовано в любом месте, в любой спектральной полосе и в любое время суток (в том числе и в дневных условиях) за достаточно небольшое время наблюдений и обработки. Кроме того, одновременно с этим обеспечивается простота в эксплуатации, компактность и мобильность, позволяющие осуществить оперативную перевозку и монтаж при изменении места испытаний.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
Источник поступления информации: Роспатент

Показаны записи 241-250 из 802.
29.12.2017
№217.015.fb3d

Устройство для отбора проб расплавленного металла

Изобретение относится к устройствам для взятия проб в жидком или текучем состоянии и может быть использовано в ядерных реакторах с жидкометаллическим теплоносителем для отбора проб расплавленного теплоносителя. Устройство содержит емкость для фиксации пробы 1, воздушную трубку 2, полость...
Тип: Изобретение
Номер охранного документа: 0002640240
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fc0d

Способ эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем

Изобретение относится к способу эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем в замкнутом топливном цикле. В заявленном способе предусмотрен переход в течение нескольких кампаний к работе на нитридном уран-плутониевом топливе в...
Тип: Изобретение
Номер охранного документа: 0002638561
Дата охранного документа: 14.12.2017
29.12.2017
№217.015.fdab

Универсальный клапан

Изобретение относится к машиностроению. Универсальный клапан с входным, выходным отверстиями содержит установленные во внутренней полости корпуса соосно подпружиненный запорный элемент и седло, отверстия для сброса газа, расположенные параллельно входному, выходному отверстиям, плавкую часть в...
Тип: Изобретение
Номер охранного документа: 0002638697
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0117

Способ сборки рентгеновской оптической системы, содержащей n зеркальных модулей

Изобретение относится к оптическому приборостроению, рентгеновской астрономии и может быть использовано при разработке способов сборки зеркальной системы телескопов, предназначенных для наблюдения астрономических объектов в рентгеновском диапазоне спектра электромагнитного излучения, в...
Тип: Изобретение
Номер охранного документа: 0002629693
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.034c

Цифровой преобразователь код-временной интервал

Изобретение относится к автоматике, телемеханике и вычислительной технике и может быть использовано в телеметрических системах с времяимпульсной модуляцией (ВИМ). Технический результат заключается в повышении надежности работы цифрового преобразователя. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002630417
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.036f

Способ преобразования низкоэнтропийных сообщений

Изобретение относится к области криптографической защиты информации. Технический результат - упрощение алгоритма преобразования и повышение стойкости к несанкционированному восстановлению данных. Способ преобразования низкоэнтропийных сообщений, заключающийся в том, что предварительно каждому...
Тип: Изобретение
Номер охранного документа: 0002630429
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.03b7

Детонационный диод-разветвитель (варианты)

Изобретение относится к устройствам, передающим детонацию. В каждом из вариантов исполнения детонационный диод-разветвитель состоит из системы детонационных каналов с входом и, по крайней мере, с одним выходом. В первом варианте исполнения каждый из детонационных каналов выполнен Z-образной...
Тип: Изобретение
Номер охранного документа: 0002630336
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.03c6

Способ определения чувствительности взрывчатых веществ к механическому воздействию

Изобретение относится к методам определения чувствительности взрывчатых веществ (ВВ) к механическим воздействиям. Способ включает помещение образца ВВ на наковальню, в центре которой выполнена выемка круглого сечения, проведение ударных испытаний с использованием груза с центральным бойком,...
Тип: Изобретение
Номер охранного документа: 0002630340
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0626

Способ формирования заготовки из материала металлорезины

Изобретение относится к области машиностроения, в частности к изготовлению деталей из металлорезины (MP), представляющей собой уложенные с взаимным перекрещиванием и затем спрессованные проволочные спирали сжатия. Способ включает формирование по крайней мере трех слоев спиралей на шаблоне...
Тип: Изобретение
Номер охранного документа: 0002631064
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.062f

Устройство для подачи текучей рабочей среды

Устройство относится к гидротранспорту с использованием давления рабочего газа и может быть применено для подачи текучих рабочих сред, в том числе имеющих высокую вязкость при отрицательной температуре. Устройство содержит корпус с входным и выходным патрубками, размещенные внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002631097
Дата охранного документа: 18.09.2017
Показаны записи 241-250 из 291.
29.12.2017
№217.015.fdab

Универсальный клапан

Изобретение относится к машиностроению. Универсальный клапан с входным, выходным отверстиями содержит установленные во внутренней полости корпуса соосно подпружиненный запорный элемент и седло, отверстия для сброса газа, расположенные параллельно входному, выходному отверстиям, плавкую часть в...
Тип: Изобретение
Номер охранного документа: 0002638697
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0117

Способ сборки рентгеновской оптической системы, содержащей n зеркальных модулей

Изобретение относится к оптическому приборостроению, рентгеновской астрономии и может быть использовано при разработке способов сборки зеркальной системы телескопов, предназначенных для наблюдения астрономических объектов в рентгеновском диапазоне спектра электромагнитного излучения, в...
Тип: Изобретение
Номер охранного документа: 0002629693
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.034c

Цифровой преобразователь код-временной интервал

Изобретение относится к автоматике, телемеханике и вычислительной технике и может быть использовано в телеметрических системах с времяимпульсной модуляцией (ВИМ). Технический результат заключается в повышении надежности работы цифрового преобразователя. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002630417
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.036f

Способ преобразования низкоэнтропийных сообщений

Изобретение относится к области криптографической защиты информации. Технический результат - упрощение алгоритма преобразования и повышение стойкости к несанкционированному восстановлению данных. Способ преобразования низкоэнтропийных сообщений, заключающийся в том, что предварительно каждому...
Тип: Изобретение
Номер охранного документа: 0002630429
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.03b7

Детонационный диод-разветвитель (варианты)

Изобретение относится к устройствам, передающим детонацию. В каждом из вариантов исполнения детонационный диод-разветвитель состоит из системы детонационных каналов с входом и, по крайней мере, с одним выходом. В первом варианте исполнения каждый из детонационных каналов выполнен Z-образной...
Тип: Изобретение
Номер охранного документа: 0002630336
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.03c6

Способ определения чувствительности взрывчатых веществ к механическому воздействию

Изобретение относится к методам определения чувствительности взрывчатых веществ (ВВ) к механическим воздействиям. Способ включает помещение образца ВВ на наковальню, в центре которой выполнена выемка круглого сечения, проведение ударных испытаний с использованием груза с центральным бойком,...
Тип: Изобретение
Номер охранного документа: 0002630340
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0626

Способ формирования заготовки из материала металлорезины

Изобретение относится к области машиностроения, в частности к изготовлению деталей из металлорезины (MP), представляющей собой уложенные с взаимным перекрещиванием и затем спрессованные проволочные спирали сжатия. Способ включает формирование по крайней мере трех слоев спиралей на шаблоне...
Тип: Изобретение
Номер охранного документа: 0002631064
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.062f

Устройство для подачи текучей рабочей среды

Устройство относится к гидротранспорту с использованием давления рабочего газа и может быть применено для подачи текучих рабочих сред, в том числе имеющих высокую вязкость при отрицательной температуре. Устройство содержит корпус с входным и выходным патрубками, размещенные внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002631097
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.0c8b

Устройство фильтрации газообразных продуктов взрыва

Изобретение относится к технике фильтрации газов, в частности к устройствам очистки газообразных продуктов взрыва (ГПВ) при их стравливании из камеры. Устройство фильтрации газообразных продуктов взрыва (ГПВ) содержит силовой корпус, прикрепленный в камере к каналу стравливания ГПВ, вход, выход...
Тип: Изобретение
Номер охранного документа: 0002632696
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0df8

Стенд для моделирования аэродинамической нагрузки на раскрывающиеся элементы летательного аппарата

Изобретение относится к устройствам для моделирования воздействия аэродинамической нагрузки на раскрывающиеся элементы летательных аппаратов при наземных испытаниях. Стенд для моделирования аэродинамической нагрузки на раскрывающиеся элементы летательных аппаратов содержит основание, на котором...
Тип: Изобретение
Номер охранного документа: 0002633089
Дата охранного документа: 11.10.2017
+ добавить свой РИД