×
25.08.2017
217.015.ce89

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002620780
Дата охранного документа
29.05.2017
Аннотация: Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ раздела между компонентами трехкомпонентной среды, при котором в емкости с контролируемой средой размещают вертикально отрезок длинной линии, заполняемый компонентами среды в соответствии с их расположением в емкости, зондируют среду видеосигналами, распространяющимися в отрезке длинной линии, и измеряют временную характеристику их распространения, дополнительно возбуждают в отрезке длинной линии электромагнитные колебания на его резонансной частоте, осуществляют ее измерение и положение каждой границы раздела определяют по разности величин, одна из которых пропорциональна разности между отношением величины, пропорциональной времени распространения видеосигналов при наличии контролируемой среды в емкости ко времени их распространения в отсутствие этой среды, и единицей, а другая величина пропорциональна разности между величиной, пропорциональной квадрату отношения резонансной частоты в отсутствие контролируемой среды к резонансной частоте при наличии этой среды в емкости, и единицей. 1 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано для высокоточного определения положения границ раздела между компонентами трехкомпонентной среды, находящейся в какой-либо емкости, одна компонента над другой, и образующих плоские границы раздела, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Известны способы и устройства для измерения положения границ раздела между компонентами многокомпонентной, в частности трехкомпонентной, среды, компоненты которой расположены в содержащей среду емкости вертикально друг над другом, радиотехническими средствами, с применением отрезков длинной линии (US 3474337 A, 21.10.1969; US 3812422 A, 21.05.1974). В этих способах измерения о положении границ раздела судят по времени, затраченному электромагнитными видеосигналами на распространение вдоль отрезка длинной линии, расположенного вертикально в емкости с контролируемой многокомпонентной средой, до неоднородностей - скачков волнового (характеристического) сопротивления на границах раздела соответствующих компонент среды, и отражение от них.

Известно также техническое решение, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (US 3832900 A, 03.09.1974). Согласно этому известному способу измерения положения границ раздела между компонентами многокомпонентной среды отрезок длинной линии располагают вертикально в емкости с контролируемой средой, обеспечивают с помощью импульсного генератора распространение видеоимпульсов в отрезке длинной линии, принимают отраженные от границ раздела между компонентами среды видеоимпульсы, обеспечивают выделение соответствующих отраженных видеоимпульсов и судят о положении границ раздела по времени, затраченному видеоимпульсами их на распространение до соответствующих границ раздела и отражение от них.

Данный способ измерения, несмотря на применение для его реализации всего одного отрезка длинной линии, обладает рядом существенных недостатков. Процесс измерения здесь достаточно сложен, поскольку реализация способа предполагает наличие громоздкой и сложной вторичной аппаратуры, предназначенной для приема отраженных от границ раздела видеосигналов, выделение каждого из них, соответствующего определенной границе раздела, и дальнейшего функционального преобразования для получения интересующей информации в удобной для регистрации форме (см. фиг. 2 в описании данного патента). При этом процесс измерения может быть существенно затруднен вследствие возможной малости амплитуд сигналов, отраженных от второй (и последующих) границ раздела и ослабленных из-за переотражений на границах раздела вышележащих компонент среды.

Этот способ не характеризуется высокой точностью измерения. При сближении границ раздела имеет место взаимное влияние информативных отраженных видеосигналов, приводящее к искажению формы импульсов и, следовательно, к снижению точности измерения.

Техническим результатом настоящего изобретения является упрощение процесса измерения и повышение точности измерений.

Технический результат достигается тем, что в предлагаемом способе определения положения границ раздела между компонентами трехкомпонентной среды в емкости, одна компонента над другой, образующими плоские горизонтальные границы раздела, при котором в емкости с контролируемой средой размещают вертикально отрезок длинной линии, заполняемый компонентами среды в соответствии с их расположением в емкости, зондируют среду видеосигналами, распространяющимися в отрезке длинной линии, и измеряют временную характеристику их распространения, дополнительно возбуждают в отрезке длинной линии электромагнитные колебания на его резонансной частоте, осуществляют ее измерение и положение каждой границы раздела определяют по разности величин, одна из которых пропорциональна разности между отношением величины, пропорциональной времени распространения видеосигналов при наличии контролируемой среды в емкости ко времени их распространения в отсутствие этой среды, и единицей, а другая величина пропорциональна разности между величиной, пропорциональной квадрату отношения резонансной частоты в отсутствие контролируемой среды к резонансной частоте при наличии этой среды в емкости, и единицей.

Предлагаемый способ поясняется фиг. 1, где приведена схема устройства для реализации способа.

На фиг. 1 показаны компоненты 1, 2 и 3, отрезок длинной линии 4, электронный блок 5.

Способ реализуется следующим образом.

Для осуществления способа определения положения границ раздела между компонентами трехкомпонентной среды в емкости здесь так же, как и в способе-прототипе, для получения информации используют один отрезок длинной линии. Однако теперь в качестве информативных сигналов используют не видеосигналы, отраженные от соответствующих границ раздела, а два различных информативных параметра - это, во-первых, какая-либо временная характеристика распространения видеосигналов вдоль отрезка длинной линии (например, период или частота повторения последовательности видеоимпульсов) и, во-вторых, резонансная частота электромагнитных колебаний отрезка длинной линии. Комбинация этих двух зависимостей от величин контролируемых границ раздела, каждая из которых выражается соответствующим уравнением, позволяет после решения системы таких уравнений получить требуемую информацию.

Что касается временной характеристики распространения видеосигналов, то в предлагаемом способе информативными сигналами служат видеосигналы, прошедшие через все три компоненты среды до нижнего конца отрезка длинной линии и отраженные от этого конца ко входу отрезка длинной линии. Для того, чтобы отраженные видеосигналы имели значительную амплитуду, отрезок длинной линии можно выполнить разомкнутым или короткозамкнутым на нижнем конце.

Рассмотрим, как следует совместно преобразовать в электронном блоке устройства, реализующего данный способ, временную характеристику видеосигналов, характеризуемую, в конечном счете, суммарным временем t их прямого (до нижнего конца отрезка длинной линии) и обратного (ко входу отрезка длинной линии) распространения, и резонансную (собственную) частоту электромагнитных колебаний отрезка длинной линии. Для этого будем считать, что содержащиеся в емкости компоненты 1, 2 и 3 трехкомпонентной среды являются диэлектрическими средами, характеризуемыми величинами относительных диэлектрических проницаемостей , и соответственно, нижележащей, промежуточной и верхней компонент среды (фиг. 1). На фиг. 1 также изображены отрезок длинной линии 4 длиной и координаты z1 и z2 границ раздела, считая от нижней (оконечной) нагрузки отрезка длинной линии; считается, что нижний конец отрезка длинной линии совмещен с дном емкости.

Тогда суммарное время t прямого и обратного распространения видеосигнала вдоль отрезка длинной линии является в этом случае следующим:

где c - скорость света.

Для резонансной (собственной) частоты электромагнитных колебаний основного типа TEM отрезка однородной длинной линии имеем в данном случае следующее выражение (это вытекает, например, из монографии (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. С. 50-59) с учетом специфики рассматриваемой здесь задачи:

где - начальное (при отсутствии в емкости всех трех компонент среды, образующих границы раздела, то есть в отрезке длинной линии с воздушным заполнением) значение резонансной частоты ;

- напряжение в точке с координатой ξ отрезка линии, возбуждаемого на резонансной частоте ; l - длина отрезка длинной линии.

Соотношения (1) и (2) будем рассматривать как систему уравнений относительно неизвестных z1 и z2. Величина U(ξ) в (2) зависит от конструктивных особенностей отрезка длинной линии, от нагрузочных элементов и может быть выбрана желательным образом. С точки зрения простоты функции в (2) и целесообразности наиболее просто решить систему уравнений (1) и (2) функцию U(ξ) можно сделать постоянной величиной: U(ξ)≡const, что соответствует равномерному характеру распределения энергии электромагнитного поля вдоль отрезка длинной линии. Такое распределение можно создать, например, сделав отрезок длинной линии разомкнутым на нижнем конце и подключив к его входу индуктивное сопротивление достаточно большой величины.

С учетом сказанного соотношение (2) принимает в этом случае следующий вид:

Уравнения (1) и (3) после преобразований можно записать, соответственно, так:

В формуле (4) - начальное (при отсутствии в емкости всех трех компонент среды, образующих границы раздела, то есть в отрезке длинной линии с воздушным заполнением) значение времени t.

Рассматривая уравнения (4) и (5) как систему уравнений относительно z1 и z2 и решая ее, получим

Эти решения можно записать также так:

В этих формулах введены следующие обозначения для констант k1, k2, k3, k4, m, n и Δ - величин, зависящих от значений диэлектрической проницаемости компонент среды, считающихся известными (справочными значениями или значениями, измеренными перед началом измерения z1 и z2):

Таким образом, измерив резонансную частоту электромагнитных колебаний основного типа TEM отрезка длинной линии и время t распространения вдоль него электромагнитного видеосигнала и преобразовав эти измеренные величины в электронном блоке устройства, реализующего данный способ, согласно соотношениям (8) и (9), получим в явном виде информацию о координатах z1 и z2 границ раздела компонент трехкомпонентной среды. Как видно из (8) и (9), эта информация получается в линейном виде, что практически является важным и устраняет необходимость применения специальных линеаризаторов выходных характеристик.

Поскольку, как показывает опыт, измерить резонансную частоту и время t можно с высокой точностью, то также будем с высокой точностью получать информацию о координатах z1 и z2. При этом два режима функционирования отрезка длинной линии, а именно режим возбуждения в нем электромагнитных колебаний и измерения резонансной частоты и режим распространения в нем видеосигналов и измерения времени t этого распространения, являются независимыми, в то время как в способе-прототипе взаимное влияние отражаемых от границ раздела видеосигналов приводит к снижению точности измерения.

На фиг. 1 схематично изображена функциональная схема устройства для реализации данного способа. Здесь в емкости, содержащей трехкомпонентную среду с компонентами 1, 2 и 3, размещен вертикально отрезок длинной, в частности коаксиальной, длинной линии 4. К его верхнему концу подключен электронный блок 5, в котором производятся все операции, необходимые для реализации данного способа: попеременное функционирование отрезка длинной линии как резонатора с измерением резонансной частоты (в первом режиме), обеспечение распространения в нем видеосигналов и измерения времени t этого распространения (во втором режиме) и последующее совместное преобразование и t согласно полученным соотношениям для определения координат z1 и z2 границ раздела компонент трехкомпонентной среды. Для упрощения вида функций и t для их совместного преобразования к верхнему концу отрезка длинной линии также может быть подключено индуктивное сопротивление (для обеспечения равномерного распределения энергии электромагнитного поля вдоль отрезка длинной линии, выполняемого в этом случае короткозамкнутым на нижнем конце).

Выше было проведено рассмотрение данного способа при наличии в емкости среды, все компоненты которой являются диэлектриками. Однако данный способ применим без какого-либо изменения его сущности и для сред с компонентами, имеющими произвольные электрофизические параметры (диэлектрическую проницаемость, электропроводность). Для контроля таких сред достаточно покрыть, по меньшей мере, один из проводников отрезка длинной линии диэлектрической оболочкой соответствующих толщины и материала, при которых как амплитуда отраженных видеосигналов, так и добротность отрезка длинной линии как резонатора имеют достаточную для регистрации величины (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. С. 125-131). Диэлектрические проницаемости и компонент среды в приведенных выше соотношениях следует заменить их эффективными значениями εэфф1, εэфф2 и εэфф3 двухслойных диэлектриков (контролируемой компоненты и диэлектрической оболочки проводника отрезка длинной линии), соответственно, определяемыми совокупностью электрофизических параметров контролируемой среды и параметрами отрезка длинной линии.

В наиболее часто встречающейся задаче самая верхняя компонента трехкомпонентной среды является воздухом. При этом в вышеприведенных формулах следует записать Тогда соотношения (6) и (7) записываются так:

и, соответственно, в формулах (8) и (9) константы имеют следующие значения:

k12-1; k3=-(ε12); m=1; n=1;

При контроле трехкомпонентных сред, у которых верхняя среда есть воздух, а хотя бы одна из остальных компонент не является хорошим диэлектриком, следует использовать, как это отмечено выше, отрезок длинной линии с диэлектрическим покрытием, по меньшей мере, одного из его проводников, контактирующих со средой. При этом в соотношениях (6) и (7). (8) и (9) следует вместо и компонент среды использовать значения εэфф2 и εэфф3. В этом случае возможно измерение положения границ раздела воздуха и нижерасположенных компонент с произвольными электрофизическими параметрами.

Таким образом, данный способ позволяет с высокой точностью положение границ раздела между компонентами трехкомпонентной среды в емкости. Этот способ достаточно прост в реализации, которая осуществима на основе одного отрезка длинной линии.

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости, одна компонента над другой, образующими плоские горизонтальные границы раздела, при котором в емкости с контролируемой средой размещают вертикально отрезок длинной линии, заполняемый компонентами среды в соответствии с их расположением в емкости, зондируют среду видеосигналами, распространяющимися в отрезке длинной линии, и измеряют временную характеристику их распространения, отличающийся тем, что дополнительно возбуждают в отрезке длинной линии электромагнитные колебания на его резонансной частоте, осуществляют ее измерение и положение каждой границы раздела определяют по разности величин, одна из которых пропорциональна разности между отношением величины, пропорциональной времени распространения видеосигналов при наличии контролируемой среды в емкости ко времени их распространения в отсутствие этой среды, и единицей, а другая величина пропорциональна разности между величиной, пропорциональной квадрату отношения резонансной частоты в отсутствие контролируемой среды к резонансной частоте при наличии этой среды в емкости, и единицей.
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 304.
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3976

Устройство для измерения толщины покрытий

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий. Технический результат достигается тем, что в устройство для измерения толщины покрытий, содержащее чувствительный элемент в виде трансформатора с...
Тип: Изобретение
Номер охранного документа: 0002647180
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3a23

Устройство для идентификации стадии жизненного цикла тематики научных лабораторий

Изобретение относится к устройству для идентификации стадий жизненного цикла тематики научных лабораторий. Технический результат заключается в автоматизации определения конкретной стадии жизненного цикла исследований. Устройство содержит с первого по десятый входные регистры, с первого по...
Тип: Изобретение
Номер охранного документа: 0002647644
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
Показаны записи 191-200 из 228.
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
+ добавить свой РИД