×
25.08.2017
217.015.ce71

Результат интеллектуальной деятельности: ДАТЧИК ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА

Вид РИД

Изобретение

№ охранного документа
0002620773
Дата охранного документа
29.05.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Измеряемыми параметрами также могут быть сплошность газо-жидкостного потока, концентрация частиц сыпучего материала в трубопроводе и др. Предлагаемый датчик физических свойств вещества, функционально связанных с его электрофизическими свойствами и включающих плотность, влагосодержание, концентрацию смеси веществ, концентрацию частиц сыпучего материала, содержит чувствительный элемент в виде объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода с торцевыми отражателями электромагнитных волн, к которому подсоединен элемент связи, при этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода. На первом торце волновода торцевой отражатель электромагнитных волн выполнен в виде отрезка металлического трубопровода с тем же диаметром, внутри которого установлена в той же плоскости, что и пластина в волноводе, дополнительная металлическая пластина шириной, равной диаметру трубопровода, и соединена с пластиной волновода в области их контакта, а на втором торце волновода торцевой отражатель электромагнитных волн выполнен или идентичным ему на первом торце волновода с установленной дополнительной металлической пластиной, или в виде металлической стенки. Техническим результатом заявленного изобретения является расширение функциональных возможностей. Таким образом, предлагаемый датчик имеет широкую область применения, обеспечивая возможность измерения физических свойств веществ как перемещаемых по трубопроводу, так и находящихся в резервуарах. 3 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Измеряемыми параметрами также могут быть сплошность газо-жидкостного потока, концентрация частиц сыпучего материала в трубопроводе и др.

Известны различные устройства для измерения физических свойств веществ, основанные на измерении электрофизических параметров (диэлектрической проницаемости ε и(или), тангенса угла диэлектрических потерь tgδ (электропроводности σ)) веществ с применением датчиков, имеющих чувствительные элементы в виде объемных резонаторов и содержащих контролируемые вещества (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. Стр. 37-144). В зависимости от электрофизических параметров вещества, функционально связанных с его измеряемым физическим свойством, возможно, при проведении рассматриваемых в заявке резонаторных измерений с применением предлагаемого датчика, определение как ε (например, путем измерения резонансной частоты резонатора), так и(или) tgδ (например, путем измерения добротности резонатора). Недостатком таких измерительных устройств являются достаточно большие размеры чувствительных элементов в виде объемных резонаторов при проведении измерений на относительно низких частотах электромагнитных волн, что приводит к ограниченной области их применения.

Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 175-176). Это техническое решение представляет собой датчик в виде объемного резонатора волноводного типа, предназначенный для измерений физических свойств веществ, перемещаемых по трубопроводу. Объемный резонатор выполнен проточным, подсоединенным к трубопроводу с помощью отверстий в его торцевых стенках. Диаметр волновода объемного резонатора больше диаметра трубопровода, а диаметр указанных отверстий в торцевых стенках волновода равен внутреннему диаметру трубопровода. В данном случае участки подсоединенного трубопровода являются торцевыми отражателями электромагнитных волн в волноводном объемном резонаторе и представляют собой запредельные волноводы для электромагнитных колебаний, возбуждаемых в данном объемном резонаторе. Волновод этого резонатора содержит размещенную вдоль его длины соосную диэлектрическую трубу, внутренний диаметр которой равен внутреннему диаметру трубопровода; тем самым образован сквозной канал без нарушения динамики потока вещества. Применение этого устройства рассмотрено для измерений физических свойств (влагосодержания) вещества, перемещаемого по трубопроводу.

Недостатком этого технического решения является ограниченная область его применения, зависящая от невысокой чувствительности датчика из-за наличия диэлектрической трубы в электромагнитном поле объемного резонатора. В частности, при измерении зависимости резонансной частоты от значения измеряемого физического свойства вещества и при выходе этого значения за пределы некоторого порогового значения устройство становится неработоспособным ввиду недостаточной его чувствительности.

Известно также техническое решение WO 99/63331 А2 (от 02.12.1999), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. В этом техническом решении датчик содержит чувствительный элемент в виде проточного объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода. К этому резонатору подсоединены элементы связи для возбуждения в резонаторе электромагнитных колебаний и съема электромагнитных колебаний. При этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода.

Недостатком этого технического решения являются его ограниченные функциональные возможности. При измерениях в сложных эксплуатационных условиях конструкция датчика должна быть более жесткой, геометрические и электрические параметры которого остаются стабильными при наличии различных возмущающих факторов (разного рода механических воздействий, вибраций и т.п.). Кроме этого, данное техническое решение неприменимо для измерения физических свойств веществ, находящихся в резервуарах.

Техническим результатом изобретения является расширение функциональных возможностей.

Технический результат достигается тем, что датчик физических свойств вещества, функционально связанных с его электрофизическими параметрами и включающих плотность, влагосодержание, концентрацию смеси веществ, концентрацию частиц сыпучего материала, содержащий чувствительный элемент в виде объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода с торцевыми отражателями электромагнитных волн, к которому подсоединен элемент возбуждения и съема электромагнитных колебаний, при этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода, на первом торце волновода торцевой отражатель электромагнитных волн выполнен в виде отрезка металлического трубопровода с тем же диаметром, внутри которого установлена в той же плоскости, что и пластина в волноводе, дополнительная металлическая пластина шириной, равной диаметру трубопровода, и соединена с пластиной волновода в области их контакта, а на втором торце волновода торцевой отражатель электромагнитных волн выполнен или идентичным ему на первом торце волновода с установленной дополнительной металлической пластиной, или в виде металлической стенки.

Предлагаемое устройство поясняется чертежами.

На фиг. 1 показана конструкции датчика для измерений физических свойств вещества, перемещаемого по трубопроводу.

На фиг. 2 и фиг. 3 приведены варианты конструкции датчика для измерений физических свойств вещества в резервуаре.

На чертежах показаны: трубопровод 1, измерительный участок 2, фланцы 3 и 4, торцевые отражатели электромагнитных волн 5 и 6, металлическая пластина 7, элемент возбуждения и съема электромагнитных колебаний 8, металлическая стенка 9.

Устройство работает следующим образом.

Возможна реализация данного устройства - датчика физических свойств вещества - применительно к измерениям в трубопроводе и в резервуаре.

Для проведения измерений в данном устройстве организован запредельный режим для электромагнитных волн с обеих (при измерениях в трубопроводах) или одной из сторон (при измерениях в резервуарах) измерительного участка, являющегося чувствительным элементом в виде волноводного объемного резонатора.

На фиг. 1 приведен датчик, конструкция которого показана схематично и предназначена для измерений в трубопроводе 1, и установлен на его измерительном участке 2, ограниченном фланцами 3 и 4. Его чувствительный элемент является проточным объемным резонатором, образованным волноводом с торцевыми отражателями электромагнитных волн 5 и 6. Стенки этого волноводного резонатора не препятствуют прохождению контролируемого вещества по трубопроводу 1. Достигается это с применением торцевых отражающих элементов 5 и 6 в виде запредельных волноводов для тех резонансных (собственных) частот, на которых возбуждаются электромагнитные колебания в этом проточном резонаторе. Конструкция этого датчика имеет жесткую конструкцию. Здесь между отражающими торцевыми пластинами 5 и 6 расположена соединяющая их (области соединения показаны пунктиром) и расположенная в той же плоскости металлическая пластина 7 шириной, меньшей диаметра, в частности ширина пластины 7 может быть равной половине диаметра (т.е. радиусу) волновода. Совокупность этих пластин 5, 6 и 7 образует единую конструкцию. Элемент возбуждения и съема электромагнитных колебаний 8 (штырь) расположен на измерительном участке в той же плоскости, что и пластина 7, на незанятом ею участке. Возможно также применение раздельных элементов связи - элемента для возбуждения в резонаторе электромагнитных колебаний и элемента для съема электромагнитных колебаний (не показано).

На измерительном участке 2 при ширине пластины 7, равной радиусу R круглого волновода (трубопровода), критическая длина λкр волны в волноводе, образующем такой резонатор, соответствует значению λкр для эквивалентного прямоугольного волновода с волнами типа Н11: λкр=2πR. Эта величина λкр равна длине широкой стенки этого прямоугольного волновода, длина узкой стенки волновода равна R.

В экспериментах исследованы, в частности, такие резонаторы со следующими размерами: внутренний диаметр трубы d=123 мм; длины резонатора (т.е. длины пластин в резонаторе) l=200 мм; 250 мм. Ширина пластины в резонаторе равна радиусу d/2=61,5 мм трубопровода. В резонаторе возбуждаются высоко добротные колебания типов H11n, n=1, 2, …. Для l=250 мм имеем для колебаний типа Н111 расчетные значения: ƒp0=1,08 ГГц; для l=250 мм значение ƒp=0,98 ГГц, что совпадает с данными экспериментов. При заполнении полости резонаторов диэлектрической жидкостью с диэлектрической проницаемостью ε, равной 2, получено в первом случае ГГц, а во втором случае ƒp=0,69 ГГц. При наличии же торцевых пластин имеем при l=250 мм, ε=2 следующие значения: ƒp0=1,55 ТГц, ƒp=1,096 ГГц.

Конструкция датчика для измерений физических свойств вещества в резервуаре показана схематично на фиг. 2 и фиг. 3. На фиг. 2 конструкция датчика соответствует конструкции на фиг. 1, предназначенной для проведения измерений в трубопроводе. Но в данном случае один из торцевых отражателей электромагнитных волн (нижний на фиг. 2), которым ранее являлся запредельный волновод, содержащий пластину 6, заменен на металлическую стенку 9 - дно резервуара, которым является данный волноводный объемный резонатор.

Конструкция датчика на фиг. 3 также предназначена для проведения измерений в резервуаре. В данном случае одним (нижним) из торцевых отражателей электромагнитных волн является металлическая стенка 9 - дно резервуара, которым является данный волноводный объемный резонатор, а другой (верхний) не имеет дополнительной металлической пластины 5.

В датчиках с чувствительными элементами в виде резонаторов на фиг. 1, фиг. 2 и фиг. 3 чувствительность датчиков имеет максимально возможную величину, определяемую значением резонансной частоты ƒp резонатора, весь объем которого заполнен контролируемым веществом. Так, для диэлектрического вещества с диэлектрической проницаемостью ε, , где ƒp0 - значение, где ƒp при ε=1, т.е. в отсутствие вещества в полости объемного резонатора.

Таким образом, предлагаемый датчик имеет широкую область применения, обеспечивая возможность измерения физических свойств веществ как перемещаемых по трубопроводам, так и находящихся в резервуарах.

Датчик физических свойств вещества, функционально связанных с его электрофизическими параметрами и включающих плотность, влагосодержание, концентрацию смеси веществ, концентрацию частиц сыпучего материала, содержащий чувствительный элемент в виде объемного резонатора, заполняемого контролируемым веществом и являющегося отрезком круглого волновода с торцевыми отражателями электромагнитных волн, к которому подсоединен элемент возбуждения и съема электромагнитных колебаний, при этом волновод объемного резонатора содержит расположенную вдоль волновода и присоединенную перпендикулярно к его внутренней поверхности металлическую пластину длиной, равной длине волновода, а ширина пластины меньше диаметра волновода, отличающийся тем, что на первом торце волновода торцевой отражатель электромагнитных волн выполнен в виде отрезка металлического трубопровода с тем же диаметром, внутри которого установлена в той же плоскости, что и пластина в волноводе, дополнительная металлическая пластина шириной, равной диаметру трубопровода, и соединена с пластиной волновода в области их контакта, а на втором торце волновода торцевой отражатель электромагнитных волн выполнен или идентичным ему на первом торце волновода с установленной дополнительной металлической пластиной, или в виде металлической стенки.
ДАТЧИК ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА
ДАТЧИК ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 53.
25.08.2017
№217.015.c9c1

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых емкостях, например, оно может быть применено для определения уровня жидкого металла. Предлагаемое устройство для измерения уровня вещества в открытой металлической емкости, содержащее объемный резонатор в виде...
Тип: Изобретение
Номер охранного документа: 0002619401
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.ce89

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ...
Тип: Изобретение
Номер охранного документа: 0002620780
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e447

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002626303
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
Показаны записи 41-50 из 86.
25.08.2017
№217.015.c9c1

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых емкостях, например, оно может быть применено для определения уровня жидкого металла. Предлагаемое устройство для измерения уровня вещества в открытой металлической емкости, содержащее объемный резонатор в виде...
Тип: Изобретение
Номер охранного документа: 0002619401
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.ce89

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ...
Тип: Изобретение
Номер охранного документа: 0002620780
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e447

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002626303
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
+ добавить свой РИД