×
25.08.2017
217.015.cd04

Результат интеллектуальной деятельности: ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к импульсной ускорительной трубке и может использоваться для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше. В заявленном устройстве изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние и наружные поверхности корпуса и патрубка и поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу. При этом взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия. Техническим результатом является расширение функциональных возможностей трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, возможность обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительнсти с минимальными искажениями, а также увеличения надежности и ресурса. 6 ил.

Предлагаемое изобретение относится к устройствам для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше.

Известна миниатюрная импульсная рентгеновская трубка (Лойко Т.В. и др. «Импульсная рентгеновская трубка», патент RU №2160480, кл. МПК Н01J 35/00, опубл. 10.12.2000 г.), содержащая вакуумированный металлический корпус с прострельной мишенью (анодом) и окном для вывода излучения, внутренний электрод трубки, состоящий из токоввода и закрепленного на нем взрывоэмиссионного катода, а также изолятор.

Недостатками трубки являются:

- малые габариты миниатюрной трубки делают невозможным частотный режим работы;

- отсутствие возможности генерации электронов;

- малая длина образующей изолятора, что ограничивает рабочее напряжение и ресурс работы трубки;

- выполнение изолятора из стекла делает невозможной работу трубки в атмосфере сжатого газа;

- наличие ступенчатых переходов на внутреннем электроде трубки, состоящем из токоввода и катода; переходы являются неоднородностями на пути распространения импульсов напряжения субнаносекундной длительности, что приводит к временному уширению импульсов.

Наиболее близкой к заявляемой является импульсная электронная трубка ИМА3-150Э (Желтов К.А. Пикосекундные сильноточные ускорители. - Москва: Энергоатомиздат, 1991. - С. 29), содержащая вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него стеклянный конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и трубчатым взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса бериллиевое окно для выпуска электронов.

Недостатками трубки является низкая механическая прочность стеклянного изолятора, что не позволяет использовать трубку в газонаполненных формирующих линиях в среде газа под давлением до 5 МПа; малый ресурс трубчатого катода, который имеет сравнительно небольшую длину эмитирующих острий и поэтому быстро изнашивается; трубчатый катод формирует неоднородный электронный пучок на аноде (выпускном окне) с выраженной фокусировкой в центральной части, что снижает допустимую амплитуду тока в трубке и делает невозможным частотный режим работы. Трубки по аналогу и прототипу могут работать только в среде жидкого диэлектрика.

При создании данного изобретения решалась задача разработки надежной импульсной ускорительной трубки для генерации наносекундных и субнаносекундных пучков электронов с энергией до 1 МэВ, способной работать в среде сжатого газа под давлением до 5 МПа. Электронные пучки могут быть конвертированы в рентгеновские при установке на пути электронов мишени из тантала, вольфрама и т.д.

Техническим результатом является расширение функциональных возможностей трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительности с минимальными искажениями, а также увеличения надежности и ресурса.

Указанный технический результат достигается тем, что по сравнению с известной импульсной ускорительной трубкой, содержащей вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него полый конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса окно с прострельным анодом, большее основание изолятора закреплено на корпусе, новым является то, что изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия.

Выполнение изолятора керамическим позволяет значительно повысить его механическую прочность по сравнению со стеклянными изоляторами трубок по аналогу и прототипу. Изоляторы из корундовой керамики типа ВК94-1 и ВК100-1 легко выдерживают давления до 5 МПа (50 атм) и выше. Высокая механическая прочность изолятора, входящего в вакуумированную оболочку, обеспечивает возможность работы трубки в газонаполненных формирующих линиях высокого давления. Достоинством таких линий в отличие от линий с жидким диэлектриком, является возможность работы в частотном режиме. Это объясняется тем, что в газонаполненных линиях можно использовать газовые разрядники-обострители с малым временем восстановления электропрочности электроразрядного промежутка (порядка сотых долей секунды для азота) в отличие от, например, масляных, для восстановления которых требуется прокачка электроразрядного промежутка в течение нескольких минут.

Выполнение корпуса с дополнительным патрубком с фланцем, расположенным на торце патрубка, дает возможность герметичного присоединения трубки к формирующей линии при обеспечении качественного электрического контакта корпуса трубки с корпусом линии. Последнее необходимо для того, чтобы трубка служила продолжением линии с тем же волновым сопротивлением и могла осуществлять без искажений генерацию импульсов электронов субнаносекундной длительности.

Выполнение внутренних поверхностей корпуса и патрубка и соответственно наружных поверхностей токоввода, катододержателя и катода в виде единых цилиндрических токопроводящих поверхностей, расположенных соосно по отношению друг к другу, позволяет рассматривать трубку как отрезок формирующей линии. Длина заявляемой трубки не ограничена, поскольку она фактически является продолжением формирующей линии с тем же волновым сопротивлением, и увеличение длины трубки не приводит к искажению поступающего на катод субнаносекундного импульса. Внутренний же диаметр корпуса трубки ограничен в значительно меньшей степени, чем у трубки по прототипу, и определяется минимальной длительностью τ импульса, передаваемого по линии (Желтов К.А. Пикосекундные сильноточные ускорители. - Москва: Энергоатомиздат, 1991. - С. 9):

;,

где f - критическая частота, Гц;

c - скорость света в вакууме, м/с

D - внутренний диаметр внешнего проводника линии, м;

d - внешний диаметр внутреннего проводника линии, м;

π=3.14;

ε - диэлектрическая проницаемость изоляционной среды линии (для газа ε≈1).

Согласно этим формулам, для формирования импульса длительностью 0.15 нс (что является наилучшим результатом в работах по созданию субнаносекундных ускорителей электронов с энергией 150-1000 кВ) допускается использовать газонаполненную линию диаметром около 50 мм. Соответственно такой же диаметр может иметь и ускорительная трубка. Это значительно больше диаметра трубки по прототипу ИМА-3 (30 мм). Увеличение диаметра корпуса позволяет повысить длину изолятора и тем самым увеличить электропрочность, надежность и ресурс трубки.

Выполнение катода многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия, позволяет увеличить надежность и ресурс трубки. Многоострийный катод имеет большую суммарную длину эмитирующих кромок, что приводит к уменьшению плотности эмиссионного тока и снижению эрозии острий по сравнению с прототипом. Закрепление его эмитирующих острий на плоском участке торца катода позволяет расположить эмитирующие кромки в одной плоскости и избежать эффекта фокусировки электронного пучка на аноде, что так характерно для трубчатого катода, используемого в трубке по прототипу. Отсутствие фокусировки и увеличение суммарной длины эмитирующих кромок способствует повышению ресурса катода и анода, что приводит к повышению ресурса и всей трубки. Кроме того, заявляемая трубка может работать в частотном режиме и выдерживать токовые импульсы, которые в трубке по прототипу приводят к ее полному разрушению за несколько импульсов.

Таким образом, в данном изобретении реализуется указанный технический результат, поскольку наличие керамического изолятора и дополнительного патрубка с торцевым фланцем, а также то, что внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, катод многоострийный, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия - все перечисленные отличительные признаки позволяют расширить функциональные возможности трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительности с минимальными искажениями, а также увеличения надежности и ресурса.

На фиг. 1 показана конструкция ускорительной трубки по аналогу.

На фиг. 2 показана конструкция ускорительной трубки по прототипу (трубка ИМА3-150Э).

На фиг. 3 показана конструкция заявляемой трубки.

На фиг. 4 показан фрагмент газонаполненной формирующей линии с присоединенной к ней заявляемой трубки.

На фиг. 5 показаны автографы электронных пучков трубки заявляемой трубки (слева) и ИМА3-150Э (справа).

На фиг. 6 показана осциллограмма тока электронов за окном заявляемой трубки. Развертка по горизонтали - 2 нс/деление.

На фигурах обозначены следующие элементы:

1 - корпус;

2 - полый конический изолятор;

3 - катододержатель;

4 - токоввод;

5 - взрывоэмиссионный катод;

6 - эмитирующие острия;

7 - окно с прострельным анодом;

8 - патрубок;

9 - фланец;

10 - корпус формирующей линии (он же внешний проводник);

11 - внутренний проводник формирующей линии;

12 - прижимной фланец;

13 - герметизирующая прокладка;

14 - стягивающий болт;

15, 16 - токопроводящие поверхности проводников формирующей линии.

Заявляемая трубка (фиг. 3) содержит вакуумированную оболочку, состоящую из металлического корпуса 1 и расположенного внутри него полого конического изолятора 2, на малом основании которого закреплен катододержатель 3 с присоединенными к нему токовводом 4 и взрывоэмиссионным катодом 5 с эмитирующими остриями 6, напротив катода расположено закрепленное на торцевом участке корпуса окно 7 с прострельным анодом, большее основание изолятора закреплено на корпусе 1, со стороны токоввода 4 корпус имеет дополнительный патрубок 8 с торцевым фланцем 9. Корпус 1, катододержатель 3 и катод изготовлены из ковара 29НК, изолятор 2 - из керамики ВК94-1, токоввод 4 - из латуни, эмитирующие острия 6 - из танталовой фольги толщиной 0.05 мм, патрубок 8 и фланец 9 - из стали 12Х18Н10Т.

Принцип работы трубки заключается в следующем. При подаче импульса высокого напряжения на токоввод 4, происходит взрывная эмиссия электронов с эмитирующих острий 6. Под воздействием разности потенциалов в зазоре между взрывоэмиссионным катодом 5 и окно с прострельным анодом 7 происходит ускорение электронов, которые затем проходят через прострельный анод и выпускаются в атмосферу.

Было изготовлено 5 трубок по заявляемой конструкции и проведены их испытания при подключении к газонаполненной формирующей линии субнаносекундного ускорителя на напряжение 800 кВ при длительности импульсов на трубке 0.3 нс. Перед определением характеристик была произведена тренировка трубок (по 50 импульсов) с частотой 0.5 Гц, что никак не сказалось на работоспособности трубок. На фиг. 5 показаны автографы электронных пучков трубки ИМА3-150Э и заявляемой трубки, полученные на пленках ЦВИД-01-1 при их расположении вплотную к прострельным окнам трубок. По фиг.5 видно, что электронный пучок заявляемой трубки имеет более равномерное распределение, и в нем отсутствует участок центральной фокусировки, как это имеет место в трубке ИМА3-150Э. Лучшая равномерность электронного пучка на окне должна привести к увеличению ресурса трубки и возможности работать при больших токах.

Осциллография формы импульса тока электронов за окном заявляемой трубки, приведенная на фиг. 6, производилась осциллографом с полосой пропускания 1.5 ГГц. Измеренная длительность импульса на полувысоте амплитуды равна 0.4 нс. С учетом временного разрешения осциллографа и влияния измерительного шунта длительность импульса тока не превышает 0,3 нс.

Импульсная ускорительная трубка, содержащая вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него полый конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса окно с прострельным анодом, большее основание изолятора закреплено на корпусе, отличающаяся тем, что изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия.
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
Источник поступления информации: Роспатент

Показаны записи 301-310 из 806.
10.05.2018
№218.016.4565

Стенд для ударных испытаний высокоскоростных объектов

Изобретение относится к испытательной технике, в частности к ствольным баллистическим установкам для испытаний артиллерийских снарядов и их компонентов на стойкость к нагрузкам артиллерийского выстрела. Стенд содержит основание с установленными на нем разгонным устройством, выполненным в виде...
Тип: Изобретение
Номер охранного документа: 0002650099
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4672

Способ автоматической сварки неплавящимся электродом

Изобретение относится к способу автоматической сварки неплавящимся электродом и может быть использовано для сварки продольных и кольцевых швов протяженных конструкций переменного сечения. Свариваемые кромки химически протравливают, механически зачищают, обезжиривают, обезвоживают. Определяют...
Тип: Изобретение
Номер охранного документа: 0002650463
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4766

Устройство для определения нейтронных характеристик полей исследовательских ядерных установок

Изобретение относится к устройствам определения нейтронных характеристик полей исследовательских ядерных установок (ИЯУ) в реальном масштабе времени. Устройство для определения нейтронных характеристик полей исследовательских ядерных установок содержит измерительные каналы, кремниевые...
Тип: Изобретение
Номер охранного документа: 0002650810
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.477c

Датчик ускорений

Изобретение относится к измерительной технике, а именно к приспособлениям для определения уровня вибрации (в том числе объемной). Предлагается применение песочных часов, выполненных в виде двух соосно установленных в корпусе и соединенных узкой горловиной стеклянных сосудов, один из которых...
Тип: Изобретение
Номер охранного документа: 0002650801
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47ff

Датчик линейных ускорений

Изобретение относится к области измерительной техники для измерений линейного ускорения. Датчик линейных ускорений содержит основание, рамочный корпус, внутри которого размещены инерционный груз, соединенный через упругий подвес с рамочным корпусом, балочный резонатор, соединенный с одной...
Тип: Изобретение
Номер охранного документа: 0002650715
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4817

Оптическая система для фокусировки излучения

Оптическая система может использоваться для формирования изображения на ПЗС-матрице и фотоприемнике в неконтактных датчиках цели. Оптическая система состоит из плосковыпуклой линзы 1, обращенной плоской поверхностью к пространству изображений, одиночного положительного мениска 2, обращенного...
Тип: Изобретение
Номер охранного документа: 0002650705
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.481d

Способ отбора микросфер по прочности к заданному давлению

Изобретение относится к получению высокопрочных мелкодисперсных полых наполнителей с повышенными прочностными характеристиками для введения в состав композиционных маетриалов, перерабатываемых с использованием давления, легковесных конструкционных материалов, плавучих материалов, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002650987
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4929

Способ изготовления термостойкого наполненного пенопласта высокой плотности

Изобретение относится к способу переработки высокомолекулярных веществ в пористые или ячеистые материалы, которые могут быть использованы при изготовлении наполненного пенопласта высокой плотности из порошковой композиции, предназначенной для изготовления лёгкого пенопласта. Исходную порошковую...
Тип: Изобретение
Номер охранного документа: 0002651156
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.49b1

Способ разрушения ледяного покрова

Изобретение относится  к области судостроения, в частности к способам разрушения судами ледяного покрова. Способ заключается в следующем. Создают выталкивающую архимедову силу путем воздействия судном на нижнюю поверхность ледяного покрова, для чего, изменяя плавучесть судна, заводят его...
Тип: Изобретение
Номер охранного документа: 0002651415
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4a28

Способ управления газоприходом в пороховой баллистической установке и установка для его осуществления

Группа изобретений относится к пороховым баллистическим установкам (ПБУ), используемым в качестве разгонных устройств в стендах для испытаний конструкций на воздействие интенсивных механических нагрузок. Управление газоприходом в ПБУ включает инициирование порохового заряда, установленного в...
Тип: Изобретение
Номер охранного документа: 0002651327
Дата охранного документа: 19.04.2018
Показаны записи 291-300 из 300.
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.42f9

Емкостной делитель напряжения

Изобретение относится к технике измерений высоких импульсных напряжений и может быть использовано для регистрации высоковольтных импульсов наносекундной длительности. Технический результат: расширение эксплуатационных возможностей делителя за счет обеспечения его работы в жидком диэлектрике, в...
Тип: Изобретение
Номер охранного документа: 0002649652
Дата охранного документа: 04.04.2018
09.09.2018
№218.016.853e

Субнаносекундный ускоритель электронов

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности. Формирователь содержит формирующую и передающею коаксиальные линии, обостряющий и срезающий разрядные зазоры, формирующая линия подключена к источнику наносекундных высоковольтных импульсов, при этом...
Тип: Изобретение
Номер охранного документа: 0002666353
Дата охранного документа: 07.09.2018
01.03.2019
№219.016.cf69

Газонаполненный разрядник

Изобретение относится к газоразрядной технике и может быть использовано при разработке высоковольтных газоразрядных приборов, например разрядников для коммутации цепей сильноточных ускорителей заряженных частиц. Газонаполненный разрядник содержит металлический корпус, в котором вдоль его оси...
Тип: Изобретение
Номер охранного документа: 0002400859
Дата охранного документа: 27.09.2010
06.09.2019
№219.017.c7e0

Субнаносекундный ускоритель электронов

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности и может быть использовано при создании субнаносекундных ускорителей электронов мегавольтного диапазона. Данные ускорители широко применяются для определения временного разрешения наносекундных...
Тип: Изобретение
Номер охранного документа: 0002699231
Дата охранного документа: 04.09.2019
17.01.2020
№220.017.f615

Субнаносекундный ускоритель электронов

Изобретение относится к субнаносекундному ускорителю электронов. Устройство содержит источник наносекундных высоковольтных импульсов, газонаполненный формирователь субнаносекундных импульсов напряжения и ускорительную трубку. Корпус формирователя выполнен разъемным и состоит из двух секций,...
Тип: Изобретение
Номер охранного документа: 0002711213
Дата охранного документа: 15.01.2020
01.07.2020
№220.018.2d88

Система дистанционного приобретения билетов на культурно-массовые мероприятия с использованием распознавания на мобильном устройстве

Изобретение относится к области вычислительной техники. Техническим результатом является повышение быстродействия системы дистанционного приобретения билетов. Технический результат достигается тем, что система содержит модуль приема образов визуального представления афиш театральных спектаклей,...
Тип: Изобретение
Номер охранного документа: 0002724967
Дата охранного документа: 29.06.2020
16.05.2023
№223.018.640a

Высоковольтный трансформатор

Изобретение относится к области электротехники, в частности к высоковольтной технике, и может быть использовано для создания высоковольтных трансформаторов на базе замкнутых стержневых магнитопроводов с любой технологией изготовления (шихтованные, ленточные и прессованные). Техническим...
Тип: Изобретение
Номер охранного документа: 0002773777
Дата охранного документа: 09.06.2022
+ добавить свой РИД