×
25.08.2017
217.015.cd04

ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к импульсной ускорительной трубке и может использоваться для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше. В заявленном устройстве изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние и наружные поверхности корпуса и патрубка и поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу. При этом взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия. Техническим результатом является расширение функциональных возможностей трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, возможность обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительнсти с минимальными искажениями, а также увеличения надежности и ресурса. 6 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к устройствам для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше.

Известна миниатюрная импульсная рентгеновская трубка (Лойко Т.В. и др. «Импульсная рентгеновская трубка», патент RU №2160480, кл. МПК Н01J 35/00, опубл. 10.12.2000 г.), содержащая вакуумированный металлический корпус с прострельной мишенью (анодом) и окном для вывода излучения, внутренний электрод трубки, состоящий из токоввода и закрепленного на нем взрывоэмиссионного катода, а также изолятор.

Недостатками трубки являются:

- малые габариты миниатюрной трубки делают невозможным частотный режим работы;

- отсутствие возможности генерации электронов;

- малая длина образующей изолятора, что ограничивает рабочее напряжение и ресурс работы трубки;

- выполнение изолятора из стекла делает невозможной работу трубки в атмосфере сжатого газа;

- наличие ступенчатых переходов на внутреннем электроде трубки, состоящем из токоввода и катода; переходы являются неоднородностями на пути распространения импульсов напряжения субнаносекундной длительности, что приводит к временному уширению импульсов.

Наиболее близкой к заявляемой является импульсная электронная трубка ИМА3-150Э (Желтов К.А. Пикосекундные сильноточные ускорители. - Москва: Энергоатомиздат, 1991. - С. 29), содержащая вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него стеклянный конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и трубчатым взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса бериллиевое окно для выпуска электронов.

Недостатками трубки является низкая механическая прочность стеклянного изолятора, что не позволяет использовать трубку в газонаполненных формирующих линиях в среде газа под давлением до 5 МПа; малый ресурс трубчатого катода, который имеет сравнительно небольшую длину эмитирующих острий и поэтому быстро изнашивается; трубчатый катод формирует неоднородный электронный пучок на аноде (выпускном окне) с выраженной фокусировкой в центральной части, что снижает допустимую амплитуду тока в трубке и делает невозможным частотный режим работы. Трубки по аналогу и прототипу могут работать только в среде жидкого диэлектрика.

При создании данного изобретения решалась задача разработки надежной импульсной ускорительной трубки для генерации наносекундных и субнаносекундных пучков электронов с энергией до 1 МэВ, способной работать в среде сжатого газа под давлением до 5 МПа. Электронные пучки могут быть конвертированы в рентгеновские при установке на пути электронов мишени из тантала, вольфрама и т.д.

Техническим результатом является расширение функциональных возможностей трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительности с минимальными искажениями, а также увеличения надежности и ресурса.

Указанный технический результат достигается тем, что по сравнению с известной импульсной ускорительной трубкой, содержащей вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него полый конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса окно с прострельным анодом, большее основание изолятора закреплено на корпусе, новым является то, что изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия.

Выполнение изолятора керамическим позволяет значительно повысить его механическую прочность по сравнению со стеклянными изоляторами трубок по аналогу и прототипу. Изоляторы из корундовой керамики типа ВК94-1 и ВК100-1 легко выдерживают давления до 5 МПа (50 атм) и выше. Высокая механическая прочность изолятора, входящего в вакуумированную оболочку, обеспечивает возможность работы трубки в газонаполненных формирующих линиях высокого давления. Достоинством таких линий в отличие от линий с жидким диэлектриком, является возможность работы в частотном режиме. Это объясняется тем, что в газонаполненных линиях можно использовать газовые разрядники-обострители с малым временем восстановления электропрочности электроразрядного промежутка (порядка сотых долей секунды для азота) в отличие от, например, масляных, для восстановления которых требуется прокачка электроразрядного промежутка в течение нескольких минут.

Выполнение корпуса с дополнительным патрубком с фланцем, расположенным на торце патрубка, дает возможность герметичного присоединения трубки к формирующей линии при обеспечении качественного электрического контакта корпуса трубки с корпусом линии. Последнее необходимо для того, чтобы трубка служила продолжением линии с тем же волновым сопротивлением и могла осуществлять без искажений генерацию импульсов электронов субнаносекундной длительности.

Выполнение внутренних поверхностей корпуса и патрубка и соответственно наружных поверхностей токоввода, катододержателя и катода в виде единых цилиндрических токопроводящих поверхностей, расположенных соосно по отношению друг к другу, позволяет рассматривать трубку как отрезок формирующей линии. Длина заявляемой трубки не ограничена, поскольку она фактически является продолжением формирующей линии с тем же волновым сопротивлением, и увеличение длины трубки не приводит к искажению поступающего на катод субнаносекундного импульса. Внутренний же диаметр корпуса трубки ограничен в значительно меньшей степени, чем у трубки по прототипу, и определяется минимальной длительностью τ импульса, передаваемого по линии (Желтов К.А. Пикосекундные сильноточные ускорители. - Москва: Энергоатомиздат, 1991. - С. 9):

;,

где f - критическая частота, Гц;

c - скорость света в вакууме, м/с

D - внутренний диаметр внешнего проводника линии, м;

d - внешний диаметр внутреннего проводника линии, м;

π=3.14;

ε - диэлектрическая проницаемость изоляционной среды линии (для газа ε≈1).

Согласно этим формулам, для формирования импульса длительностью 0.15 нс (что является наилучшим результатом в работах по созданию субнаносекундных ускорителей электронов с энергией 150-1000 кВ) допускается использовать газонаполненную линию диаметром около 50 мм. Соответственно такой же диаметр может иметь и ускорительная трубка. Это значительно больше диаметра трубки по прототипу ИМА-3 (30 мм). Увеличение диаметра корпуса позволяет повысить длину изолятора и тем самым увеличить электропрочность, надежность и ресурс трубки.

Выполнение катода многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия, позволяет увеличить надежность и ресурс трубки. Многоострийный катод имеет большую суммарную длину эмитирующих кромок, что приводит к уменьшению плотности эмиссионного тока и снижению эрозии острий по сравнению с прототипом. Закрепление его эмитирующих острий на плоском участке торца катода позволяет расположить эмитирующие кромки в одной плоскости и избежать эффекта фокусировки электронного пучка на аноде, что так характерно для трубчатого катода, используемого в трубке по прототипу. Отсутствие фокусировки и увеличение суммарной длины эмитирующих кромок способствует повышению ресурса катода и анода, что приводит к повышению ресурса и всей трубки. Кроме того, заявляемая трубка может работать в частотном режиме и выдерживать токовые импульсы, которые в трубке по прототипу приводят к ее полному разрушению за несколько импульсов.

Таким образом, в данном изобретении реализуется указанный технический результат, поскольку наличие керамического изолятора и дополнительного патрубка с торцевым фланцем, а также то, что внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, катод многоострийный, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия - все перечисленные отличительные признаки позволяют расширить функциональные возможности трубки за счет работы как в газонаполненных линиях высокого давления, так и в линиях с жидким диэлектриком, обеспечения частотной генерации электронных и рентгеновских пучков субнаносекундной длительности с минимальными искажениями, а также увеличения надежности и ресурса.

На фиг. 1 показана конструкция ускорительной трубки по аналогу.

На фиг. 2 показана конструкция ускорительной трубки по прототипу (трубка ИМА3-150Э).

На фиг. 3 показана конструкция заявляемой трубки.

На фиг. 4 показан фрагмент газонаполненной формирующей линии с присоединенной к ней заявляемой трубки.

На фиг. 5 показаны автографы электронных пучков трубки заявляемой трубки (слева) и ИМА3-150Э (справа).

На фиг. 6 показана осциллограмма тока электронов за окном заявляемой трубки. Развертка по горизонтали - 2 нс/деление.

На фигурах обозначены следующие элементы:

1 - корпус;

2 - полый конический изолятор;

3 - катододержатель;

4 - токоввод;

5 - взрывоэмиссионный катод;

6 - эмитирующие острия;

7 - окно с прострельным анодом;

8 - патрубок;

9 - фланец;

10 - корпус формирующей линии (он же внешний проводник);

11 - внутренний проводник формирующей линии;

12 - прижимной фланец;

13 - герметизирующая прокладка;

14 - стягивающий болт;

15, 16 - токопроводящие поверхности проводников формирующей линии.

Заявляемая трубка (фиг. 3) содержит вакуумированную оболочку, состоящую из металлического корпуса 1 и расположенного внутри него полого конического изолятора 2, на малом основании которого закреплен катододержатель 3 с присоединенными к нему токовводом 4 и взрывоэмиссионным катодом 5 с эмитирующими остриями 6, напротив катода расположено закрепленное на торцевом участке корпуса окно 7 с прострельным анодом, большее основание изолятора закреплено на корпусе 1, со стороны токоввода 4 корпус имеет дополнительный патрубок 8 с торцевым фланцем 9. Корпус 1, катододержатель 3 и катод изготовлены из ковара 29НК, изолятор 2 - из керамики ВК94-1, токоввод 4 - из латуни, эмитирующие острия 6 - из танталовой фольги толщиной 0.05 мм, патрубок 8 и фланец 9 - из стали 12Х18Н10Т.

Принцип работы трубки заключается в следующем. При подаче импульса высокого напряжения на токоввод 4, происходит взрывная эмиссия электронов с эмитирующих острий 6. Под воздействием разности потенциалов в зазоре между взрывоэмиссионным катодом 5 и окно с прострельным анодом 7 происходит ускорение электронов, которые затем проходят через прострельный анод и выпускаются в атмосферу.

Было изготовлено 5 трубок по заявляемой конструкции и проведены их испытания при подключении к газонаполненной формирующей линии субнаносекундного ускорителя на напряжение 800 кВ при длительности импульсов на трубке 0.3 нс. Перед определением характеристик была произведена тренировка трубок (по 50 импульсов) с частотой 0.5 Гц, что никак не сказалось на работоспособности трубок. На фиг. 5 показаны автографы электронных пучков трубки ИМА3-150Э и заявляемой трубки, полученные на пленках ЦВИД-01-1 при их расположении вплотную к прострельным окнам трубок. По фиг.5 видно, что электронный пучок заявляемой трубки имеет более равномерное распределение, и в нем отсутствует участок центральной фокусировки, как это имеет место в трубке ИМА3-150Э. Лучшая равномерность электронного пучка на окне должна привести к увеличению ресурса трубки и возможности работать при больших токах.

Осциллография формы импульса тока электронов за окном заявляемой трубки, приведенная на фиг. 6, производилась осциллографом с полосой пропускания 1.5 ГГц. Измеренная длительность импульса на полувысоте амплитуды равна 0.4 нс. С учетом временного разрешения осциллографа и влияния измерительного шунта длительность импульса тока не превышает 0,3 нс.

Импульсная ускорительная трубка, содержащая вакуумированную оболочку, включающую в себя металлический корпус и расположенный внутри него полый конический изолятор, на малом основании которого закреплен катододержатель с присоединенными к нему токовводом и взрывоэмиссионным катодом, напротив катода расположено закрепленное на торцевом участке корпуса окно с прострельным анодом, большее основание изолятора закреплено на корпусе, отличающаяся тем, что изолятор выполнен керамическим, со стороны токоввода корпус имеет дополнительный патрубок с торцевым фланцем для присоединения к формирующей линии, внутренние поверхности корпуса и патрубка и соответственно наружные поверхности токоввода, катододержателя и катода образуют единые цилиндрические токопроводящие поверхности, расположенные соосно по отношению друг к другу, взрывоэмиссионный катод выполнен многоострийным, с торцевым плоским участком, на котором своими основаниями закреплены эмитирующие острия.
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
ИМПУЛЬСНАЯ УСКОРИТЕЛЬНАЯ ТРУБКА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 806.
12.01.2017
№217.015.5d04

Способ контроля хода выполнения программы пользователя, исполняющейся на вычислительных узлах вычислительной системы

Изобретение относится к области вычислительной техники, в частности к организации контроля хода выполнения программы, выполняющейся на вычислительной системе, вычислительном кластере. Технический результат - эффективное использование программы пользователя, что обеспечивает своевременное...
Тип: Изобретение
Номер охранного документа: 0002591020
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e6c

Способ определения характеристик срабатывания детонирующего устройства

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента...
Тип: Изобретение
Номер охранного документа: 0002590960
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6030

Способ определения углового положения подвижного объекта относительно центра масс

Способ определения углового положения подвижного объекта относительно центра масс, т.е определение пространственной ориентации при угловом движении, преимущественно летательных аппаратов (ЛА), относительно какой-либо базовой системы координат, путем аналитического ее вычисления на основе...
Тип: Изобретение
Номер охранного документа: 0002590287
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.605d

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства относится к взрывным работам, в частности к устройствам бесконтактного программирования и передаче данных инициатору газодинамического импульсного устройства с...
Тип: Изобретение
Номер охранного документа: 0002590270
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66b3

Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного...
Тип: Изобретение
Номер охранного документа: 0002592056
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66bb

Лазерное средство инициирования

Изобретение относится к лазерным средствам инициирования, изготовленным с использованием вторичных взрывчатых веществ (ВВ). Лазерное средство инициирования содержит установленные соосно в корпусе 1 источник излучения 2, заряд ВВ, оптический подпор 3, размещенный между источником излучения 2 и...
Тип: Изобретение
Номер охранного документа: 0002592014
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66ca

Термочувствительный датчик

Изобретение относится к электротехнике, а именно к тепловым устройствам для контроля температуры деталей и узлов машин, защиты от температурных перегрузок электротехнических объектов. Техническим результатом является повышение надежности, быстродействия срабатывания, повышение удобства...
Тип: Изобретение
Номер охранного документа: 0002592081
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66d5

Универсальный излучатель твердотельного лазера

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники. Устройство накачки...
Тип: Изобретение
Номер охранного документа: 0002592057
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66e1

Способ настройки зеркал резонатора

Способ настройки зеркал резонатора заключается в том, что устанавливают оправы с зеркалами с прижатием в трех точках на несущую часть резонатора и совмещают рабочие поверхности зеркал. Настройка проводится в два этапа. На первом этапе - при настройке резонатора, измеряют угол отклонения между...
Тип: Изобретение
Номер охранного документа: 0002592051
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.680e

Способ извлечения микроконцентраций урана из водных растворов

Изобретение относится к области сорбционной технологии извлечения радионуклидов, а именно к способу извлечения микроконцентраций урана из водных растворов. Способ проводят путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на...
Тип: Изобретение
Номер охранного документа: 0002591956
Дата охранного документа: 20.07.2016
Показаны записи 91-100 из 300.
12.01.2017
№217.015.5d04

Способ контроля хода выполнения программы пользователя, исполняющейся на вычислительных узлах вычислительной системы

Изобретение относится к области вычислительной техники, в частности к организации контроля хода выполнения программы, выполняющейся на вычислительной системе, вычислительном кластере. Технический результат - эффективное использование программы пользователя, что обеспечивает своевременное...
Тип: Изобретение
Номер охранного документа: 0002591020
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e6c

Способ определения характеристик срабатывания детонирующего устройства

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента...
Тип: Изобретение
Номер охранного документа: 0002590960
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6030

Способ определения углового положения подвижного объекта относительно центра масс

Способ определения углового положения подвижного объекта относительно центра масс, т.е определение пространственной ориентации при угловом движении, преимущественно летательных аппаратов (ЛА), относительно какой-либо базовой системы координат, путем аналитического ее вычисления на основе...
Тип: Изобретение
Номер охранного документа: 0002590287
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.605d

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства относится к взрывным работам, в частности к устройствам бесконтактного программирования и передаче данных инициатору газодинамического импульсного устройства с...
Тип: Изобретение
Номер охранного документа: 0002590270
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66b3

Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного...
Тип: Изобретение
Номер охранного документа: 0002592056
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66bb

Лазерное средство инициирования

Изобретение относится к лазерным средствам инициирования, изготовленным с использованием вторичных взрывчатых веществ (ВВ). Лазерное средство инициирования содержит установленные соосно в корпусе 1 источник излучения 2, заряд ВВ, оптический подпор 3, размещенный между источником излучения 2 и...
Тип: Изобретение
Номер охранного документа: 0002592014
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66ca

Термочувствительный датчик

Изобретение относится к электротехнике, а именно к тепловым устройствам для контроля температуры деталей и узлов машин, защиты от температурных перегрузок электротехнических объектов. Техническим результатом является повышение надежности, быстродействия срабатывания, повышение удобства...
Тип: Изобретение
Номер охранного документа: 0002592081
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66d5

Универсальный излучатель твердотельного лазера

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники. Устройство накачки...
Тип: Изобретение
Номер охранного документа: 0002592057
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66e1

Способ настройки зеркал резонатора

Способ настройки зеркал резонатора заключается в том, что устанавливают оправы с зеркалами с прижатием в трех точках на несущую часть резонатора и совмещают рабочие поверхности зеркал. Настройка проводится в два этапа. На первом этапе - при настройке резонатора, измеряют угол отклонения между...
Тип: Изобретение
Номер охранного документа: 0002592051
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.680e

Способ извлечения микроконцентраций урана из водных растворов

Изобретение относится к области сорбционной технологии извлечения радионуклидов, а именно к способу извлечения микроконцентраций урана из водных растворов. Способ проводят путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на...
Тип: Изобретение
Номер охранного документа: 0002591956
Дата охранного документа: 20.07.2016
+ добавить свой РИД