×
25.08.2017
217.015.ccca

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ТЕРМИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ДЛЯ ТЕРМИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ

Вид РИД

Изобретение

№ охранного документа
0002620843
Дата охранного документа
30.05.2017
Аннотация: Изобретение относится к композиционному материалу для термического накопителя энергии с термопластичным материалом, а также к способу получения такого композиционного материала. Композиционный материал содержит термопластичный материал с изменяемым фазовым состоянием, в который с заданным пространственным распределением внедрены центры кристаллизации. Материал с изменяемым фазовым состояние представляет собой ультравысокомолекулярный полиэтилен. Центры кристаллизации имеют более высокую температуру размягчения, в частности по меньшей мере на 50°С более высокую температуру размягчения, чем материал с изменяемым фазовым состоянием и/или центры кристаллизации имеют более высокую теплопроводность, чем материал с изменяемым фазовым состоянием. Изобретение позволяет получить композиционный материал, для термического накопителя энергии, посредством которого может быть уменьшено явление переохлаждения. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к композиционному материалу для термического накопителя энергии, а также к способу получения такого композиционного материала для термического накопителя энергии.

Термические накопители энергии, которые выполнены как так называемые накопители скрытой теплоты, используют свойства материалов с изменяемым фазовом состоянием, скрытая теплота плавления, теплота растворения или теплота абсорбции которых существенно больше, чем теплота, которую они могут накоплять за счет своей нормальной удельной теплоемкости без эффекта фазового превращения. Примерами применения являются, например, греющие подушки, аккумуляторы холода или наполненные парафином накопительные элементы в танках гелиотермических установок.

При разряжении термических накопителей энергии на основе материалов с изменяемым фазовым состоянием возможно возникновение нежелательного явления переохлаждения, известного под английским термином subcooling, из-за которого кристаллизация материала с изменяемым фазовым состоянием и, тем самым, отдача тепла начинается лишь явно ниже точки плавления материала с изменяемым фазовым состоянием. Вследствие этого отдача тепла осуществляется на относительно низком температурном уровне, который может быть невыгодным для применения в накопителе энергии.

Данная проблема существует также, например, в случае рассматриваемых здесь материалов с изменяемым фазовым состоянием, которые, несмотря на изменение фазового состояния с твердого на жидкое, проявляют относительно формоустойчивое поведение, как, например, ультравысокомолекулярный полиэтилен, который вследствие длин цепей своих молекул имеет такую вязкость, которая влечет за собой некоторую формоустойчивость также после изменения фазового состояния с твердого на жидкое.

Поэтому задача настоящего изобретения заключается в том, чтобы предоставить композиционный материал для термического накопителя энергии, а также способ получения такого композиционного материала, посредством которых может быть уменьшено явление переохлаждения.

Данная задача решается композиционным материалом, а также способом получения такого композиционного материала с признаками независимых пунктов формулы изобретения. Обеспечивающие преимущество варианты осуществления с целесообразными и нетривиальными усовершенствованиями изобретения раскрыты в зависимых пунктах формулы изобретения.

Композиционный материал по изобретению для термического накопителя энергии включает в себя термопластичный материал с изменяемым фазовым состоянием, в который с заданным пространственным распределением внедрены центры кристаллизации. Благодаря тому, что композиционный материал помимо термопластичного материала с изменяемым фазовым состоянием имеет центры кристаллизации, нежелательное явление переохлаждения может быть в значительной степени уменьшено, так как начинающееся на центрах кристаллизации затвердевание материала с изменяемым фазовым состоянием осуществляется по существу непосредственно после перехода ниже точки плавления материала с изменяемым фазовым состоянием. Сопутствуя затвердеванию или, соответственно, кристаллизации материала с изменяемым фазовым состоянием, тем самым также начинается по существу непосредственно с переходом ниже точки плавления материала с изменяемым фазовым состоянием отдача тепла, существенная для применения в термическом накопителе энергии. Тем самым отдача тепла может осуществляться на относительно высоком температурном уровне, что обеспечивает преимущество в плане применения композиционного материала в термическом накопителе энергии.

В предпочтительном варианте осуществления изобретения предусмотрено, что материал с изменяемым фазовым состоянием представляет собой ультравысокомолекулярный полиэтилен. Это влечет за собой то преимущество, что благодаря длинам цепей молекул материала с изменяемым фазовым состоянием при изменении фазового состояния с твердого на жидкое материал с изменяемым фазовым состоянием и тем самым композиционный материал в целом имеет такую вязкость, что все еще имеется некоторая формоустойчивость композиционного материала. Предпочтительно, материал с изменяемым фазовым состоянием имеет выше своей температуры плавления нулевую вязкость, составляющую по меньшей мере одну килопаскаль-секунду, предпочтительно одну мегапаскаль-секунду.

В дополнительном предпочтительном варианте осуществления изобретения предусмотрено, что центры кристаллизации имеют более высокую температуру размягчения, в частности по меньшей мере на 50°C более высокую температуру размягчения, чем материал с изменяемым фазовым состоянием. Благодаря этому можно гарантировать, что центры кристаллизации не влияют на термический цикл композиционного материала, так как из-за повышенной точки плавления центры кристаллизации в ходе обычного диапазона используемых температур композиционного материала являются как геометрически, так и механически стабильными и, кроме того, также предпочтительно не вступают в химические реакции с материалом с изменяемым фазовым состоянием. При этом температура плавления материала с изменяемым фазовым состоянием предпочтительно составляет приблизительно 130°C, но также может колебаться в зависимости от композиции материал с изменяемым фазовым состоянием в диапазоне примерно от 100°C до 170°C.

Дополнительный предпочтительный вариант осуществления изобретения предусматривает, что центры кристаллизации имеют более высокую теплопроводность, чем материал с изменяемым фазовым состоянием. Благодаря этому может быть достигнуто повышение эффективной теплопроводности композиционного материала в целом, что может положительно сказываться на поглощении энергии и отдаче энергии при применении в термическом накопителе энергии.

Согласно дополнительному предпочтительному варианту осуществления изобретения предусмотрено, что центры кристаллизации представляют собой выполненные в волокнистой форме материалы из углерода, как, например, из углеродных волокон, углеродных нанотрубок (англ. carbon nanotubes) и тому подобное, выполненные в пластинчатой форме материалы, например, из талька, графита или слоистых силикатов, и/или материалы, выполненные в форме как микро-, так и наноразмерных сфер, как, например, нитрид бора, оксид кремния или сажа.

Дополнительный предпочтительный вариант осуществления изобретения предусматривает, что посредством центров кристаллизации в композиционном материале сформирован по меньшей мере один заданный канал теплоотвода, который имеет по меньшей мере в одном направлении более высокую теплопроводность, чем остальной композиционный материал. Другими словами, может быть сформирована анизотропная теплопроводность композиционного материала, так что, например, в одном предпочтительном направлении может осуществляться особенно хорошее поглощение тепла, а также особенно хорошая отдача тепла, так что при применении в термическом накопителе энергии может обеспечиваться возможность соответствующего приспособления композиционного материала к соответственно существующим краевым условиям. Альтернативно, однако, также возможно, что центры кристаллизации размещены в композиционном материале таким образом, что он имеет по меньшей мере по существу изотропную теплопроводность. В данном случае центры кристаллизации распределены в композиционном материале предпочтительно по существу равномерно.

Согласно дополнительному предпочтительному варианту осуществления изобретения предусмотрено, что число центров кристаллизации уменьшается от расположенных снаружи краевых областей композиционного материала к расположенным внутри областям композиционного материала. Тем самым расположенные снаружи краевые области, через которые обычно осуществляется подведение тепла, а также отведение тепла композиционного материала при применении в термическом накопителе энергии, могут особенно хорошо поглощать и отдавать тепловую энергию. Благодаря концентрации центров кристаллизации, уменьшающейся от расположенных снаружи краевых областей к расположенным внутри областям композиционного материала, может быть достигнут особенно быстрый отклик композиционного материала при переходе выше или переходе ниже температуры плавления материала с изменяемым фазовым состоянием.

В предлагаемом в изобретении способе получения композиционного материала для термического накопителя энергии термопластический материал с изменяемым фазовым состоянием смешивают с центрами кристаллизации в смесь, из которой впоследствии формируют композиционный материал. При этом предпочтительные варианты осуществления предлагаемого в изобретении композиционного материала следует рассматривать как предпочтительные варианты осуществления способа.

Согласно предпочтительному варианту осуществления способа по изобретению предусмотрено, что центры кристаллизации и термопластический материал с изменяемым фазовым состоянием смешивают друг с другом в порошкообразном состоянии. Благодаря этому может осуществляться особенно хорошее и простое промешивание центров кристаллизации с материалом с изменяемым фазовым состоянием.

Согласно дополнительному предпочтительному варианту осуществления способа по изобретению предусмотрено, что материал с изменяемым фазовым состоянием перед смешением с центрами кристаллизации смешивают с растворителем, в частности с органическим растворителем, и после смешения материала с изменяемым фазовым состоянием с центрами кристаллизации растворитель удаляют из смеси. В данном способе следует отметить отличающееся особой гомогенностью распределение частиц наполнителя, то есть центров кристаллизации, и материала с изменяемым фазовым состоянием, а также возможность формования литьевым способом.

Дополнительный предпочтительный вариант осуществления способа предусматривает, что для получения композиционного материала смесь экструдируют или прессуют, в частности формуют горячим прессованием. В зависимости от вязкости применяемого материала с изменяемым фазовым состоянием напрашивается один или предпочтительнее другой способ. Если вязкость используемого материала с изменяемым фазовым состоянием остается не слишком высокой выше его температуры плавления, в частности в диапазоне от 1000 до 10000 паскаль-секунд, композиционный материал с желаемым качеством может быть получен посредством экструзии. При вязкости материала с изменяемым фазовым состоянием более 10000 паскаль-секунд для получения композиционного материала напрашивается, в частности, способ горячего прессования, так как продвижение смеси посредством экструзии может быть реализовано лишь с трудом или вовсе невозможно.

Если смесь подвергают прессованию, в частности горячему прессованию, тогда предпочтительно ее вакуумируют в ходе процесса прессования, чтобы при необходимости уменьшить или отрегулировать пористость формованного изделия.

Дополнительные преимущества, признаки и подробности изобретения следуют из нижеследующего описания предпочтительного примера осуществления, а также из чертежей. Вышеназванные в описании признаки и сочетания признаков, а также названные ниже в описании фигур и/или показанные только на фигурах признаки и сочетания признаков применимы не только в соответствующем указанном сочетании, но и в единственности, не выходя за рамки изобретения.

Примеры осуществления изобретения подробнее пояснены ниже с помощью схематичных чертежей.

На них изображены:

на Фиг.1 - схематичное представление композиционного материала для термического накопителя энергии, который изготовлен из термопластичного материала с изменяемым фазовым состоянием, в который внедрено множество центров кристаллизации; и

на Фиг.2 - схематичное представление экструзионного способа получения композиционного материала.

В совокупности обозначенный позицией 10 композиционный материал для не показанного здесь термического накопителя энергии показан в схематичном представлении на Фиг.1. Композиционный материал включает в себя термопластичный материал 12 с изменяемым фазовым состоянием, в который внедрено множество центров 14 кристаллизации, причем только часть центров 14 кристаллизации снабжена ссылочной позицией.

Касательно материала 12 с изменяемым фазовым состоянием, речь идет об ультравысокомолекулярном полиэтилене, который имеет среднюю молярную массу вплоть до 6000 кг/моль и плотность от 0,89 до 0,98 г/см3. При этом материал 12 с изменяемым фазовым состоянием имеет выше своей точки плавления нулевую вязкость, составляющую по меньшей мере одну килопаскаль-секунду, предпочтительно одну мегапаскаль-секунду. Температура плавления термопластичного материала с изменяемым фазовым состоянием составляет приблизительно 130°C, причем в зависимости от композиции материала 12 с изменяемым фазовым состоянием температуры плавления могут находиться также в диапазоне приблизительно от 100°C до 170°C.

Центры 14 кристаллизации могут быть сформированы, например, из волокнистых материалов, состоящих из углерода (например, из углеродных волокон, углеродных нанотрубок и так далее), из пластинчатых материалов, таких как тальк, графит и слоистые силикаты, или из сферических материалов как микро-, так и наноразмера, таких как нитрид бора, оксид кремния и сажа.

При этом центры 14 кристаллизации предпочтительно имеют более высокую температуру размягчения, чем материал 12 с изменяемым фазовым состоянием. Температура размягчения центров 14 кристаллизации может лежать, например, приблизительно на 50°C выше температуры плавления материала 12 с изменяемым фазовым состоянием, так что в пределах обычно предусматриваемых температур применения композиционного материала 10 в термическом накопителе энергии центры 14 кристаллизации не плавятся и, тем самым, остаются стабильными механически, а также геометрически и также ведут себя инертно по отношению к материалу 12 с изменяемым фазовым состоянием.

Центры 14 кристаллизации также предпочтительно имеют более высокую теплопроводность, чем материал 12 с изменяемым фазовым состоянием. Благодаря этому может быть достигнуто повышение эффективной теплопроводности всего композиционного материала 10.

Как здесь представлено, центры 14 кристаллизации могут быть размещены по существу равномерно в композиционном материале 10, соответственно в материале 12 с изменяемым фазовым состоянием, служащем в качестве матричного материала. При таком равномерном распределении центров 14 кристаллизации результатом обычно являются изотропные теплопроводные характеристики композиционного материала 10.

В зависимости от краевых условий центры 14 кристаллизации в отличие от показанного здесь представления также могут быть размещены неравномерно в композиционном материале 10. Например, возможно, что число центров 14 кристаллизации уменьшается вовнутрь от расположенной снаружи краевой области, которая схематично отделена пунктирной линией 16 от расположенной внутри области композиционного материала 10. Другими словами, также возможно, что центры 14 кристаллизации в расположенных снаружи областях композиционного материала 10 размещены с большей концентрацией, чем в расположенных внутри областях композиционного материала 10. Благодаря этому можно надлежащим образом отрегулировать характеристики теплопоглощения и теплоотдачи композиционного материала 10.

В зависимости от краевых условий внутри композиционного материала 10 соответствующим размещением центров 14 кристаллизации может быть сформирован соответствующий заданный канал теплоотвода внутри композиционного материала 10. Например, предпочтительные направления для проведения тепла внутри композиционного материала 10 могут быть заданы в горизонтальном направлении x, в вертикальном направлении y или ортогонально к плоскости, образованной горизонтальным направлением x и вертикальным направлением y. Другими словами, композиционный материал 10 в данных случаях имеет по меньшей мере в одном направлении более высокую теплопроводность, чем остальной композиционный материал 10.

Благодаря тому, что материал 12 с изменяемым фазовым состоянием, выше своей температуры плавления, имеет нулевую вязкость, составляющую по меньшей мере одну килопаскаль-секунду, предпочтительно одну мегапаскаль-секунду, после изменения фазового состояния с твердого на жидкое можно также гарантировать, что центры 14 кристаллизации по существу остаются на своем заданном месте внутри композиционного материала 10. Другими словами, следовательно, благодаря надлежаще высокой вязкости материала 12 с изменяемым фазовым состоянием также выше его температуры плавления предотвращается оседание или также суспендирование центров 14 кристаллизации. По причине стабильного к циклическим воздействиям пространственного размещения центров 14 кристаллизации материал 12 с изменяемым фазовым состоянием имеет кристаллизационные характеристики, воспроизводимые на протяжении многих термических циклов.

На Фиг.2 в схематичной боковой проекции показан экструдер 18, посредством которого получают композиционный материал 10. Материал 12 с изменяемым фазовым состоянием, который порошкообразным подают в экструдер 18, представлен схематично изображенным с помощью кружков. Центры 14 кристаллизации и материал 12 с изменяемым фазовым состоянием подают в порошкообразном состоянии в загрузочную воронку 20. В загрузочной воронке 20 центры 14 кристаллизации и материал 12 с изменяемым фазовым состоянием смешиваются друг с другом с образованием смеси 22. При этом смешение или промешивание центров 14 кристаллизации и термопластичного материала 12 с изменяемым фазовым состоянием осуществляется таким образом, что центры 14 кристаллизации по возможности гомогенно распределяются в материале 12 с изменяемым фазовым состоянием.

Через загрузочную воронку 20 смесь 22 подают к шнеку 24 экструдера 18, причем шнек 24 движется внутри цилиндра 26 экструдера 18. При этом цилиндр 26 по своей длине может быть, с одной стороны, нагрет, но также, с другой стороны, охлажден для того, чтобы проводить экструзию смеси 22, как того желают.

Представленный здесь способ экструзии для получения композиционного материала 10 пригоден в особенности тогда, когда, с одной стороны, желательным является отличающееся особой гомогенностью размещение центров 14 кристаллизации в материале 12 с изменяемым фазовым состоянием и, с другой стороны, когда вязкость материала 12 с изменяемым фазовым состоянием должна быть не слишком высокой, в особенности находясь в диапазоне от 1000 до 10000 паскаль-секунд.

Если материал 12 с изменяемым фазовым состоянием, который используют для получения композиционного материала 10, имеет относительно высокую вязкость, в особенности в области выше 10000 паскаль-секунд, вместо способа экструзии напрашивается предпочтительнее способ прессования, в особенности способ горячего прессования.

В данном случае также материал 12 с изменяемым фазовым состоянием и центры 14 кристаллизации в порошкообразной форме сначала смешивают друг с другом с образованием смеси 22, а затем подают в подходящий пресс для получения композиционного материала. Для формирования разных областей внутри композиционного материала 10, которые, соответственно, имеют разные концентрации или количества центров 14 кристаллизации, могут быть получены, соответственно, разные смеси 22, и, например, такие области могут быть размещены или насыпаны внутри формы для горячего прессования с соответствующим формированием слоев.

Альтернативно, для получения смеси 22 также возможно, что материал 12 с изменяемым фазовым состоянием перед смешением с центрами 14 кристаллизации сначала смешивают с растворителем, в особенности с органическим растворителем, например в форме 1,2,4-трихлорбензола, при температуре 135°C. Впоследствии осуществляется смешение материала 12 с изменяемым фазовым состоянием с центрами 14 кристаллизации, причем после смешения растворитель снова удаляют из полученной смеси 22. Затем смесь 22 в свою очередь может быть подана по выбору в проиллюстрированный способ экструзии или также в уже упомянутый способ прессования, соответственно горячего прессования.

В случае способа прессования для получения композиционного материала 10 смесь 22 может быть вакуумирована в ходе процесса прессования настолько, чтобы композиционный материал 10 имел заданную пористость. Другими словами, например, внутри пресс-формы может быть осуществлено вакуумирование, чтобы отвести избыточный или нежелательный воздух из композиционного материала 10.


КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ТЕРМИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ДЛЯ ТЕРМИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 1 427.
27.11.2013
№216.012.84bb

Способ автоматизированного ремонта детали машин

Изобретение относится к автоматизированному ремонту детали машин, в частности турбинные лопатка или лопасти. Способ включает оцифровку первой геометрии детали машин, включая поврежденную часть детали машин, механическую обработку впадины над поврежденной частью детали машин, при этом обработку...
Тип: Изобретение
Номер охранного документа: 0002499657
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.85a0

Установка для добычи на месте содержащего углеводороды вещества

Изобретение относится к установке для добычи на месте содержащего углеводороды вещества из подземного месторождения с понижением его вязкости. Обеспечивает повышение надежности индукционного нагревания и упрощение ввода энергии в подземное месторождение. Сущность изобретения: установка содержит...
Тип: Изобретение
Номер охранного документа: 0002499886
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.85a4

Газовая турбина, снабженная предохранительной пластиной между ножкой лопатки и диском

Ротор газовой турбины включает расположенные на диске турбины охлаждаемые рабочие лопатки, каждая из которых имеет ножку лопатки, расположенную в осевом пазу для ее фиксации. Между ножкой лопатки и дном паза расположена предохранительная пластина для защиты рабочих лопаток от смещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002499890
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8601

Способ и устройство для бесконтактного определения температуры т металлического расплава

Изобретение относится к способу и устройству для точного бесконтактного определения температуры Т металлического расплава (2) в печи (1), которая содержит по меньшей мере один блок (3) горелки-копья, который направляется над металлическим расплавом (2) через стенку (1b) печи в печное...
Тип: Изобретение
Номер охранного документа: 0002499983
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8650

Быстродействующее переключающее устройство для аккумуляторной батареи высокой мощности в изолированной сети постоянного тока

Использование: в области электротехники. Технический результат - повышение быстродействия коммутации токов разряда. Предложено быстродействующее переключающее устройство (1) для аккумуляторной батареи (2) высокой мощности в изолированной сети (3) постоянного тока, особенно сети постоянного тока...
Тип: Изобретение
Номер охранного документа: 0002500062
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8651

Регулятор трехфазного тока

Изобретение относится к области электротехники и может быть использовано в регуляторе трехфазного тока. Технический результат - улучшение массогабаритных показателей. Регулятор трехфазного тока содержит три ветви с соответствующим входом (U1, V1, W1) и выходом (U2, V2, W2), с пятью парами (1,...
Тип: Изобретение
Номер охранного документа: 0002500063
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.87fc

Способ функционирования прокатного стана холодной прокатки с улучшенной динамикой

Способ предназначен для повышения мобильности управления многоклетьевым прокатным станом холодной прокатки. Устройством определения усилия прокатки определяют действительное усилие прокатки последней прокатной клети и подают его на устройство регулирования, где определяют и выдают по меньшей...
Тип: Изобретение
Номер охранного документа: 0002500494
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8949

Гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов

Изобретение относится к металлургии, а именно к γ/γ'-суперсплавам на основе никеля. Сплав содержит, вес.%: вплоть до 20 суммы Со и Fe, между 17 и 21 Сr, между 0,5 и 3 суммы Мо и W, не более 2 Мо, между 4,8 и 6 Аl, между 1,5 и 5 Та, между 0,01 и 0,2 суммы С и В, между 0,01 и 0,2 Zr, между 0,05 и...
Тип: Изобретение
Номер охранного документа: 0002500827
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89aa

Преобразующая энергию текучей среды машина

Изобретение относится к преобразующей энергию текучей среды машине 1, в частности компрессору 3 или насосу. Содержит корпус 7, электродвигатель 4, по меньшей мере одно рабочее колесо 11, по меньшей мере два радиальных подшипника 17, 18, по меньшей мере один проходящий вдоль продольной оси 6 вал...
Тип: Изобретение
Номер охранного документа: 0002500924
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a64

Система с газонепроницаемым измерительным вводом

Изобретение относится к устройствам измерения высокого напряжения. Газонепроницаемый измерительный ввод имеет пронизанное измерительной жилой (8, 8а) в направлении основной оси (3) изоляционное тело (7, 7а). Изоляционное тело (7, 7а) окружено рамой. Рама имеет первую часть (1) рамы и вторую...
Тип: Изобретение
Номер охранного документа: 0002501110
Дата охранного документа: 10.12.2013
Показаны записи 111-120 из 945.
10.11.2013
№216.012.7e9b

Осевая турбомашина с малыми потерями через зазоры

Осевая турбомашина (1) включает рабочую лопаточную решетку, которая образована рабочими лопатками (3), у каждой из которых имеется передняя кромка (8) и расположенная в радиальном направлении снаружи свободная вершина (15) лопатки. Рабочую лопаточную решетку охватывают стенки (13) кольцевого...
Тип: Изобретение
Номер охранного документа: 0002498084
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ee7

Горелка для газотурбинного двигателя

Изобретение относится к горелке для газотурбинного двигателя. Горелка содержит радиальную центробежную форсунку для создания завихренной топливовоздушной смеси, камеру сгорания, в которой происходит сгорание завихренной топливовоздушной смеси, и предкамеру. Предкамера расположена между...
Тип: Изобретение
Номер охранного документа: 0002498160
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ee8

Ступенчатый завихритель для динамического управления

Завихряющее устройство для впрыска среды в турбину имеет центральную ось, центральный канал, проходящий в осевом направлении вдоль центральной оси, и наружный периметр. Также оно содержит базовую пластину с торцевой поверхностью, в которой сформированы первый проход и второй проход. Проходы...
Тип: Изобретение
Номер охранного документа: 0002498161
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8027

Электрическая машина с радиальными металлическими перегородками для направления охлаждающего воздуха

Изобретение относится к области электротехники, в частности к электрическим машинам. Предлагается электрическая машина с радиально-щелевым охлаждением в листовом пакете (12) статора и листовом пакете (7) ротора, причем основной поток охлаждающего воздуха с двух сторон по оси направляется в...
Тип: Изобретение
Номер охранного документа: 0002498480
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8033

Дизель-электрическая система привода

Изобретение относится к области электротехники и может быть использовано в дизель-электрической системе привода. Технический результат - исключение перегрузки мощных полупроводников автономных выпрямителей импульсного тока со стороны генератора при проведении теста self-load-test....
Тип: Изобретение
Номер охранного документа: 0002498492
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.81d9

Способ эксплуатации санитарного бака для рельсового транспортного средства

Изобретение относится к железнодорожному транспорту. Способ эксплуатации бака для размещения жидкости в санитарной установке рельсового транспортного средства включает: а) измерение степени заполнения бака; b) в случае, когда измеренная на стадии а) степень заполнения равна или больше заданной...
Тип: Изобретение
Номер охранного документа: 0002498917
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.81da

Колейное транспортное средство с сенсорным устройством

Изобретение относится к колейному транспортному средству с контролем зоны между сцепленными вагонами. Колейное транспортное средство содержит первый и второй сцепленные друг с другом вагоны, а также, по меньшей мере, одно сенсорное устройство для контролирования зоны между обоими сцепленными...
Тип: Изобретение
Номер охранного документа: 0002498918
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8232

Пропиточная смоляная система для изоляционных материалов в распределительных устройствах

Настоящее изобретение относится к изолирующей смоле на основе сложного глицидилового эфира для изоляционных материалов в распределительных устройствах. Указанная смола содержит метилнадик-ангидрид и/или гидрированный метилнадик-ангидрид и имидазол структуры где R, R, R и R указаны в п.1...
Тип: Изобретение
Номер охранного документа: 0002499006
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82d3

Подшипниковое устройство (варианты) и подшипниковый кронштейн с магнитным радиальным и поддерживающим подшипниками для вращающейся машины (варианты)

Изобретение относится к двум подшипниковым устройствам из магнитного радиального и поддерживающего подшипников для бесконтактного опирания и поддержания вала ротора турбомашины мощностью 1000 кВт и более. Предложены подшипниковое устройство и подшипниковый кронштейн (1) из магнитного...
Тип: Изобретение
Номер охранного документа: 0002499167
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8382

Ротор и способ изготовления ротора электрической машины

Изобретение относится к области электротехники и касается изготовления роторов электрических машин. Предложен способ изготовления ротора (14) для электрической машины (13), включающий следующие стадии его осуществления: а) изготовление магнитного элемента (8) посредством склеивания друг с...
Тип: Изобретение
Номер охранного документа: 0002499342
Дата охранного документа: 20.11.2013
+ добавить свой РИД