×
25.08.2017
217.015.cbd2

Результат интеллектуальной деятельности: Способ контроля процесса плавки в вакуумной дуговой печи

Вид РИД

Изобретение

№ охранного документа
0002620537
Дата охранного документа
26.05.2017
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения межэлектродного промежутка. Способ включает измерение собственной резонансной частоты колебательного контура, возбужденного электромагнитными колебаниями, и содержащего плавящийся электрод с дугой, с учетом которой определяют межэлектродный промежуток и по величине которого контролируют процесс плавки. При этом возбуждение электромагнитных колебаний осуществляют в колебательном контуре, представляющем собой открытый резонатор, в качестве отражателей которого используют торец плавящегося электрода, выполненного со сквозным отверстием, через которое вводят электромагнитные колебания, и ванну жидкого металла в кристаллизаторе. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами в металлургической промышленности.

Известен способ контроля процесса вакуумной дуговой плавки (см. RU 2215959 С2, 11.2003), при котором возбуждают высокочастотные колебания на резонансной частоте кристаллизатора с плавящимся электродом как коаксиального резонатора и по изменению частоты в процессе плавки судят об уровне заполнения кристаллизатора жидким металлом, а по изменению амплитуды высокочастотных колебаний судят о межэлектродном промежутке (расстоянии) и капельном замыкании.

Недостатком этого известного способа является низкое качество контроля межэлектродного промежутка (расстояние) из-за нестабильности амплитуды высокочастотных колебаний.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ контроля процесса плавки в вакуумной дуговой печи. Согласно этому способу (RU 2556249 С2, 06.2015) для контроля процесса плавки организуют колебательный контур на базе последовательно соединенных кристаллизатора, навесного конденсатора и расходуемого электрода с дугой. В этом колебательном контуре возбуждают высокочастотные колебания и при текущем значении длины дуги в вакуумной дуговой печи судят по измеренной резонансной частоте колебательного контура. Недостатком данного способа можно считать низкую точность измерения межэлектродного промежутка ввиду температурного перепада между навесным конденсатором и расходуемым электродом с дугой.

Техническим результатом заявляемого технического решения является повышение точности измерения межэлектродного промежутка.

Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем измерение собственной резонансной частоты колебательного контура, возбужденного электромагнитными колебаниями и содержащего плавящийся электрод с дугой, с учетом которой определяют межэлектродный промежуток и по величине которого контролируют процесс плавки, возбуждение электромагнитных колебаний осуществляют в колебательном контуре, представляющем собой открытый резонатор, в качестве отражателей которого используют торец плавящегося электрода, выполненного со сквозным отверстием, через которое вводят электромагнитные колебания, и ванну жидкого металла в кристаллизаторе.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение собственной резонансной частоты возбужденного электромагнитными колебаниями открытого резонатора, образованного плавящимися электродом со сквозным отверстием и ванной жидкого металла в кристаллизаторе, дает возможность измерить расстояние межэлектродного промежутка.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу измерения межэлектродного промежутка на основе измерения собственной резонансной частоты открытого резонатора с плавящимся электродом и ванной жидкого металла, используемыми как отражатели с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с первым плечом микроволнового циркулятора 2, плоский отражатель 3, вогнутый отражатель 4, измеритель амплитудно-частотных характеристик 5.

Предлагаемый способ работает следующим образом. Суть предлагаемого технического решения заключается в образовании на базе объекта контроля (вакуумной дуговой печи) колебательной системы, использующей резонансные свойства открытого резонатора, отражателями которого могут являться торец плавящегося электрода со сквозным отверстием и поверхность ванны жидкого металла. В рассматриваемом случае торец плавящегося электрода используется как плоский отражатель открытого резонатора, а поверхность ванны жидкого металла - как вогнутый отражатель открытого резонатора. При этом сквозное отверстие плавящегося электрода используется для ввода электромагнитных колебаний в полость открытого резонатора и вывода этих колебаний из полости открытого резонатора.

Пусть электромагнитные колебания с помощью сквозного отверстия поступают в полость открытого резонатора. Тогда при резонансе для собственной резонансной частоты (круговой) с данного открытого резонатора можно записать

где q - целое число (практически q>3), с - скорость распространения электромагнитной волны между отражателями (свободное пространство), l - расстояние между вогнутым (ванной жидкого металла) и плоским (торцом расходуемого электрода) отражателями открытого резонатора.

Принимая во внимание то, что в процессе переплава жаропрочных сплавов оптимальная (допустимая) длина межэлектродного промежутка может колебаться в диапазоне между минимумом и максимумом длины межэлектродного промежутка, принимаем какое-нибудь среднее значение расстояния между отражателями и обозначим как lcp. Тогда уравнение (1) можно переписать как

Отсюда следует, что измерением резонансной частоты данного открытого резонатора, при постоянных значениях q и с, можно судить об уменьшении и увеличении длины межэлектродного промежутка.

Как показывает практика, при переплаве межэлектродный промежуток заполняется ионизированным паром, например, алюминия, который может оказать влияние на характеристики распространения электромагнитной волны между отражателями. В данном случае к основным параметрам ионизированного газа, оказывающим непосредственное влияние на характеристики распространения электромагнитных волн, можно отнести диэлектрическую и магнитную проницаемости указанной среды. При этом магнитную проницаемость этого пара μп можно принимать равной единице (случай вакуума).

Как известно, диэлектрическая проницаемость ионизированного газа 8 отличается от единицы, и она может быть выражена как

ε=1-80,8Nэ/f2,

где Nэ - электронная плотность, см-1, f - используемая частота электромагнитной волны. Из приведенной формулы вытекает условие распространения электромагнитной волны, при котором собственная частота ионизированного газа (f0=80,8Nэ) должна быть больше используемой частоты f (коэффициент преломления имеет мнимую величину). В соответствии с этим для диэлектрической проницаемости ионизированного пара можно принимать

εп=1-f02/f2.

Как видно из последней формулы диэлектрическая проницаемость ионизированного пара меньше единицы и зависит от частоты колебаний. Другими словами данный ионизированный пар можно отнести к диспергирующим средам с фазовой скоростью распространения электромагнитных волн. С учетом этого, для фазовой скорости ϑф распространения электромагнитной волны можно записать

Из формулы (3) видно, что при вычислении длины межэлектродного промежутка (см. формулу (2)) необходимо учесть скорость распространения электромагнитной волны, с учетом диэлектрической проницаемости ионизированного пара. Кроме того, эта формула дает возможность при определенных (известных) значениях конструктивных размеров плавящегося электрода и ванны жидкого металла выбрать частоту, обеспечивающую распространение волн между отражателями без особых потерь. Из вышеизложенного следует, что на основе колебательных характеристик данного колебательного контура (открытого резонатора) с учетом диэлектрических свойств ионизированного пара можно измерить длину межэлектродного промежутка.

В устройстве, реализующем данный способ, выходной сигнал микроволнового генератора 1 поступает к первому плечу микроволнового циркулятора 2. После этого микроволновым сигналом, снимаемым со второго плеча циркулятора и прошедшим через сквозное отверстие плавящегося электрода 3, возбуждают электромагнитные колебания в открытом резонаторе (колебательном контуре), организованном плавящимся электродом 3 и ванной жидкого металла 4. В данном техническом решении для подтверждения факта резонанса в данной колебательной системе и его отслеживания сигнал с резонатора поступает во второе плечо циркулятора. Согласно принципу действия циркулятора сигнал, пришедший с резонатора, снимается с третьего плеча циркулятора и далее поступает на вход измерителя амплитудно-частотных характеристик 5. Здесь можно зафиксировать резонанс в данной колебательной системе и произвести измерение собственной резонансной частоты открытого резонатора, связанной длиной межэлектродного промежутка.

Таким образом, в предлагаемом техническом решении на основе измерения собственной резонансной частоты открытого резонатора, образованного на базе объекта контроля посредством плавящегося электрода и ванной жидкого металла, можно обеспечить повышение точности измерения межэлектродного промежутка.

Данный способ успешно может быть применен в металлургической промышленности для управления технологическими процессами в вакуумной дуговой печи.

Способ контроля процесса плавки в вакуумной дуговой печи, включающий измерение собственной резонансной частоты возбужденного электромагнитными колебаниями колебательного контура, с учетом которой определяют межэлектродный промежуток и осуществляют контроль процесса плавки, отличающийся тем, что возбуждение электромагнитных колебаний осуществляют в колебательном контуре в виде открытого резонатора, в качестве отражателей которого используют торец плавящегося электрода со сквозным отверстием, через которое вводят электромагнитные колебания, и ванну жидкого металла в кристаллизаторе.
Способ контроля процесса плавки в вакуумной дуговой печи
Способ контроля процесса плавки в вакуумной дуговой печи
Источник поступления информации: Роспатент

Показаны записи 71-80 из 282.
20.05.2015
№216.013.4b6c

Устройство для обезвоживания нефтепродукта путем выпаривания водяных капелек

Изобретение относится к обезвоживанию нефтепродукта. Изобретение касается устройства обезвоживания нефтепродукта, протекающего по магистральному трубопроводу, путем выпаривания из него водяных капелек. Устройство содержит источник энергии электромагнитного поля, соединенный выходом с элементом...
Тип: Изобретение
Номер охранного документа: 0002550822
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d22

Бесконтактный радиоволновый способ определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается способ измерения уровня жидкости, при...
Тип: Изобретение
Номер охранного документа: 0002551260
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
Показаны записи 71-80 из 191.
20.05.2015
№216.013.4b6c

Устройство для обезвоживания нефтепродукта путем выпаривания водяных капелек

Изобретение относится к обезвоживанию нефтепродукта. Изобретение касается устройства обезвоживания нефтепродукта, протекающего по магистральному трубопроводу, путем выпаривания из него водяных капелек. Устройство содержит источник энергии электромагнитного поля, соединенный выходом с элементом...
Тип: Изобретение
Номер охранного документа: 0002550822
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d22

Бесконтактный радиоволновый способ определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается способ измерения уровня жидкости, при...
Тип: Изобретение
Номер охранного документа: 0002551260
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
+ добавить свой РИД