×
25.08.2017
217.015.cbbc

Результат интеллектуальной деятельности: Прибор для определения параметров газовыделения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем. Изобретение предназначено для определения максимальной скорости газовыделения (Wmax), температуры начала экзотермических процессов (Тн), индукционного периода (Тинд), суммарных объемов выделившихся газов (Vг) при атмосферном давлении и может быть использовано в химической и нефтехимической промышленности на любых предприятиях и заводах, где возможно попадание горючих веществ в смеси с окислителем на высокотемпературные операции. Предложен прибор для определения параметров газовыделения, содержащий воздушный термостат с электронагревателем и терморезистором. Внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, при этом ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары. Крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе. Термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, а терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем. Ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, который выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов. Технический результат - повышение точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб. 3 ил.

Изобретение относится к области измерительной техники, а именно к способам определения термической стабильности жидких однофазных и двухфазных, а также гетерогенных систем. Изобретение предназначено для определения максимальной скорости газовыделения (Wmax), температуры начала экзотермических процессов (Тн), индукционного периода (Тинд), суммарных объемов выделившихся газов (Vг) при атмосферном давлении и может быть использовано в химической и нефтехимической промышленности на любых предприятиях и заводах, где возможно попадание горючих веществ в смеси с окислителем на высокотемпературные операции.

В настоящее время применяются следующие типы калориметров: адиабатические, изотермические, диатермические, теплопроводящие, поточные. Однако все выше перечисленные калориметры направлены, в основном, на исследование твердых веществ.

Наиболее распространены калориметры переменной температуры, в которых количество теплоты Q определяется по изменению температуры калориметрической системы:

Q=W*ΔT,

где W - тепловое значение калориметра (т.е. количество теплоты, необходимое для его нагревания на 1 К), найденное предварительно в градуировочных опытах, ΔT - изменение температуры во время опыта.

За основу взят обычный калориметр, нагрев образцов в котором происходит в воздушном термостате.

Этот способ является одним из самых эффективных, недорогих и технически упрощенных, поэтому он был взят за основу.

Недостатком известного способа термического анализа является невозможность определения объема выделившихся в ходе реакции газообразных продуктов реакции

Технический результат изобретения - повышение точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб.

Технический результат достигается тем, что прибор для определения параметров газовыделения содержит воздушный термостат с электронагревателем и терморезистором, внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары, при этом крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе, блок управления, состоящий из аналого-цифрового преобразователя, ПИД-регулятора, контроллера, интерфейса RS232/USB и блока питания, при этом термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем, ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, персональный компьютер выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов.

Для определения объема выделившихся газов использован ультразвуковой датчик измерения скорости истечения газов, что позволяет избавиться от погрешности измерений, связанной с хемосорбцией выделяющихся газов.

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрированном чертежами, где показано следующее.

На фиг. 1 представлен прибор для определения параметров газовыделения, где:

1, 2 - ячейки;

3 - воздушный термостат;

4 - термопара;

5 - газовая трубка;

6 - ультразвуковой измеритель скорости истечения газа;

7 - пьезоэлемент;

8 - газовый переключатель;

9 - блок управления;

10 - персональный компьютер;

11 - электронагреватель;

12 - терморезистор.

На фиг. 2 представлена схема блока управления, где показано:

13 - АЦП

14 - Контроллер

15 - ПИД-регулятор

16 - Блок питания

17 - Интерфейс RS 232/USB.

На фиг. 3 показана блок-схема программы для ЭВМ-реализующей функции процессора, где:

18 - RS 232/USB-интерфейс

19 - Парсер

20 - Блок ввода параметров эксперимента

21 - Блок формирования строки параметров эксперимента

22 - Блок формирования строковой таблицы показаний датчиков

23 - Блок преобразования показаний датчиков

24 - Библиотека калибровочных коэффициентов

25 - Блок учета датчика свободных концов

26 - Формирование строковой таблицы преобразованных показаний датчиков и запись ее в файл

27 - Блок визуализации показаний датчиков.

Заявленный прибор для определения параметров газовыделения работает следующим образом:

Исследуемый образец помещается в одну из ячеек из нержавеющей стали объемом 2 мл (1), во вторую (2) - инертный при условиях исследования образец сравнения равной массы с близкой теплоемкостью. Каждая ячейка снабжена парой термопар (4), расположенной на разной высоте, для измерения температуры в образце и газовой фазе. С помощью АЦП (13) сигналы с термопар преобразовываются в цифровые показания в мВ, контроллер (14) в свою очередь преобразует строки данных и обеспечивает связь с ЭВМ через интерфейс RS 232/USB (17). Также крышка ячейки имеет отверстие для газоотвода, соединенного газовой трубкой (5) с одноканальным ультразвуковым измерителем скорости истечения газа (6). Принцип действия ультразвукового измерителя скорости истечения газа основан на измерении зависящего от расхода того или иного акустического эффекта, возникающего при прохождении ультразвуковых колебаний через контролируемый поток газа. В таких расходомерах ультразвуковые колебания, создаваемые пьезоэлементами (7), направляются по потоку газа и против него. Разность времен прохождения Δτ ультразвуковыми импульсами расстояния между излучателем и приемником по потоку и против потока пропорциональна скорости потока. Расходомер по конструктивному исполнению является одноканальным, где каждый пьезоэлемент работает попеременно в режиме излучателя и приемника, что обеспечивается системой переключателей. Основные трудности использования ультразвукового метода связаны с тем, что скорость ультразвука в среде зависит от физико-химических свойств последней: температуры, давления, и она значительно больше скорости среды, так что действительная скорость ультразвука в движущейся среде мало отличается от скорости в неподвижной среде. Разность времен прохождения Δτ равна 10-6…10-7 с даже при скоростях потока 10…15 м/с, причем измерять Δτ нужно с погрешностью 10-8…10-9 с. Эти обстоятельства обусловливают необходимость применения сложных электронных схем в сочетании с микропроцессорной техникой, обеспечивающих компенсацию влияния перечисленных факторов.

На выходе ультразвукового измерителя скорости истечения газа имеется газовый переключатель (8), который дает возможность отбора проб для анализа химического состава газа. Ячейки помещаются в воздушный термостат (3), снабженный электронагревательным элементом (4), управляемый персональным компьютеров на базе процессора.

Попадая в визуальную среду программы, а именно в блок ввода параметров эксперимента (блок 20), пользователь выбирает режим эксперимента (количество ступеней нагрева, скорость нагрева, временные интервалы), блок формирования строки параметров эксперимента (21) формирует строку, содержащую эти данные, и отправляет в ПИД-регулятор (15) после запуска эксперимента.

ЭВМ в свою очередь получает от контроллера (14) строки данных вида:

t; U1; U2; U3; …Un,

где t - текущее время эксперимента, Ux - показания терморезистора измерения температуры свободных концов в мВ.

Каждая термопара предварительно калибруется, а калибровочные коэффициенты хранятся в библиотеке калибровочных коэффициентов (24), блок преобразования показаний датчиков (23) осуществляет преобразование показаний термопар (мВ) в градусы по шкале Цельсия с помощью функции вида:

А1х1+В1=Т1,

где А1, В1 - коэффициенты преобразования, Т1 - вычисленная температура в градусах Цельсия, x1 - соответствующее показание термопар в мВ.

Так как температура термопарами регистрируется относительно их свободных концов, чтобы получить истинную температуру, к рассчитанным значениям прибавляется значение температуры свободных концов, эта операция производится блоком учета датчика свободных концов (25):

Т1к=Тсв.к.+Т1.

Формирование строковой таблицы преобразованных показаний датчиков и запись ее в файл производятся в блоке 26. Результаты вычисленных значений построчно записываются в файл, выводятся на экран монитора, как в виде числовых значений на текущий момент, так и в виде точки на временной диаграмме в блоке визуализации показаний датчиков (27) визуальной среды программы.

Таким образом достигается технический результат изобретения, выражающийся в повышении точности одновременного измерения скорости потоков газовых продуктов, а также возможность одновременного отбора как жидких, так и газовых проб.

В качестве АЦП можно использовать, например, серийный блок ICP.COMI-7019R.

В качестве ультразвукового измерителя скорости истечения газа можно использовать, например, серийный датчик ONICON F-4000.

В качестве контроллера можно использовать, например, серийный блок ICP.COMI-7188.

Прибор для определения параметров газовыделения содержит воздушный термостат с электронагревателем и терморезистором, внутрь термостата установлены две ячейки из нержавеющей стали, выполненные с возможностью заливания в них жидких образцов, ячейки снабжены герметично закрывающимися крышками, в которые вмонтированы термопары, при этом крышки имеют отверстия для соединения с трубками газоотвода, которые соединены с ультразвуковыми измерителями скорости истечения газа с установленными пьезоэлементами и газовым переключателем на выходе, блок управления, состоящий из аналого-цифрового преобразователя, ПИД-регулятора, контроллера, интерфейса RS232/USB и блока питания, при этом термопары подключены к входу аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход которого подключен через интерфейс RS232/USB к персональному компьютеру, терморезистор подключен к входам аналого-цифрового преобразователя и ПИД-регулятора, выход которого соединен с электронагревателем, ультразвуковой измеритель скорости истечения газа подключен через интерфейс RS232/USB к персональному компьютеру, персональный компьютер выполнен на базе процессора, выполненного с возможностью: визуализации данных эксперимента в реальном времени, регистрации данных в файл, просмотра файлов экспериментов.
Прибор для определения параметров газовыделения
Прибор для определения параметров газовыделения
Прибор для определения параметров газовыделения
Источник поступления информации: Роспатент

Показаны записи 41-50 из 53.
20.04.2023
№223.018.4b57

Способы и стенд для измерения деформации гранул нанопористых материалов, стимулированной адсорбцией или температурой дилатометрическим методом

Заявленная группа изобретений относится к области измерительной техники и экспериментального изучения физико-химических свойств пористых материалов, а именно к технике и технологи измерения деформации пористых материалов, стимулированной адсорбцией или температурой, и может быть использована...
Тип: Изобретение
Номер охранного документа: 0002766188
Дата охранного документа: 09.02.2022
15.05.2023
№223.018.57f9

Способ селективного извлечения скандия из редкоземельных концентратов

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Для выделения скандия из водного раствора, содержащего нитрат скандия, нитрат иттрия, нитраты редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002767924
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.5f76

Водная суспензия, содержащая органосилан, ингибитор коррозии и промотор поликонденсации, и способ получения защитных пленок на поверхности вольфрама и покрытий на его основе из водной суспензии, содержащей органосилан, ингибитор коррозии и промотор поликонденсации

Группа изобретений относится к области поверхностных пленок для временной консервации поверхности вольфрама и покрытий на его основе в коррозионно-агрессивных атмосферах. Для получения защитной пленки на поверхности вольфрама или на поверхности покрытий на основе вольфрама используют водную...
Тип: Изобретение
Номер охранного документа: 0002744336
Дата охранного документа: 05.03.2021
16.05.2023
№223.018.5f78

Водная суспензия, содержащая органосилан, ингибитор коррозии и промотор поликонденсации, и способ получения защитных пленок на поверхности вольфрама и покрытий на его основе из водной суспензии, содержащей органосилан, ингибитор коррозии и промотор поликонденсации

Группа изобретений относится к области поверхностных пленок для временной консервации поверхности вольфрама и покрытий на его основе в коррозионно-агрессивных атмосферах. Для получения защитной пленки на поверхности вольфрама или на поверхности покрытий на основе вольфрама используют водную...
Тип: Изобретение
Номер охранного документа: 0002744336
Дата охранного документа: 05.03.2021
16.05.2023
№223.018.610a

Анод литий-ионного аккумулятора для работы при пониженных температурах и способ его изготовления

Изобретение относится к электротехнической промышленности, в частности, к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Способ изготовления анода литий-ионного аккумулятора включает нанесение массивов наночастиц...
Тип: Изобретение
Номер охранного документа: 0002743576
Дата охранного документа: 20.02.2021
16.05.2023
№223.018.614d

Способ обработки поверхностей металлов с многомодальной шероховатостью для придания им супергидрофобности и антикоррозионных свойств

Изобретение относится к области защиты металлов от коррозии. Способ включает обработку поверхностей металлов с многомодальной шероховатостью в парах гидрофобизатора при повышенной температуре от 60 до 150 °С, при этом в качестве гидрофобизатора используют стеариновую, лауриловую кислоты, их...
Тип: Изобретение
Номер охранного документа: 0002741028
Дата охранного документа: 22.01.2021
16.05.2023
№223.018.61d8

Кристаллическая модификация 2-[(4-хлорфенил)фенилацетил]-1h-инден-1,3(2h)-диона (хлорфацинон) с повышенными характеристиками токсичности и способ ее получения

Изобретение относится к органической химии, в частности касается кристаллической модификации 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона (хлорфацинона), характеризующейся следующими значениями параметров кристаллографической ячейки: пр. гр. 2/с, = 9.853(1) Å, = 9.041(1) Å, =...
Тип: Изобретение
Номер охранного документа: 0002748259
Дата охранного документа: 21.05.2021
16.05.2023
№223.018.61fa

Кристаллическая модификация 2-[(4-хлорфенил)фенилацетил]-1h-инден-1,3(2h)-диона (хлорфацинон) и способ ее получения

Изобретение относится к органической химии, в частности касается кристаллической модификации 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона (хлорфацинона), характеризующейся следующими значениями параметров кристаллографической ячейки: пр. гр. 2/с, = 16.70(2) Å, = 5.62(3) Å, = 20.2(1)...
Тип: Изобретение
Номер охранного документа: 0002748131
Дата охранного документа: 19.05.2021
20.05.2023
№223.018.6788

Композитный каталитический материал для получения чистого водорода для водородо-воздушных топливных элементов и способ его изготовления

Изобретение относится к технологиям получения водорода из боргидридов щелочных металлов при их гидролизе в присутствии катализатора. Предложены композитный каталитический материал для получения чистого водорода, содержащий по массе из расчёта на боргидрид щелочного металла 6,0-20,0% борида...
Тип: Изобретение
Номер охранного документа: 0002794902
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.6aed

Неводный раствор для заполнения хлорид-серебряного электрода сравнения

Изобретение относится к области физико-химических методов исследования и может быть использовано при изучении кинетики электродных процессов, оценке коррозионного поведения металлов, разработке химических источников тока в неводных электролитах. Техническим результатом заявленного изобретения...
Тип: Изобретение
Номер охранного документа: 0002795673
Дата охранного документа: 05.05.2023
Показаны записи 41-42 из 42.
09.06.2019
№219.017.7c41

Способ пайки изделия, преимущественно теплообменника

Изобретение может быть использовано для пайки пластинчато-ребристых и трубчатых теплообменников в вакууме, например, в авиадвигателестроении и других отраслях машиностроения. Осуществляют поэтапный нагрев соединяемых деталей в вакууме сканирующим электронным лучом до температуры плавления...
Тип: Изобретение
Номер охранного документа: 0002362657
Дата охранного документа: 27.07.2009
16.07.2020
№220.018.3306

Экстракционная смесь для извлечения тпэ и рзэ из высокоактивного рафината переработки оят аэс и способ ее применения

Изобретения относятся к области радиохимической технологии и может быть использованы при обращении с высокоактивным рафинатом Пурекс-процесса переработки отработавшего ядерного топлива (ОЯТ) АЭС. Способ извлечения трансплутониевых элементов (ТПЭ) и РЗЭ из высокоактивного рафината от переработки...
Тип: Изобретение
Номер охранного документа: 0002726519
Дата охранного документа: 14.07.2020
+ добавить свой РИД