×
25.08.2017
217.015.cb7a

Результат интеллектуальной деятельности: УСТРОЙСТВО ОПТИМИЗАЦИИ АЛГОРИТМОВ АДАПТАЦИИ И СТАБИЛИЗАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОПЕРАТОРНЫМ МЕТОДОМ

Вид РИД

Изобретение

Аннотация: Устройство оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом содержит блоки ввода данных продольного канала, бокового канала и канала крена, систему стабилизации, содержащую продольный канал, боковой канал и канал крена, модуль расчета перекрестных связей, модуль оптимизации системы стабилизации, модуль формирования критериев, модуль формирования результатов, модуль хранения данных, соединенные определенным образом. Обеспечивается высокая точность управляющего сигнала для стабилизации летательного аппарата с учетом компенсации действия внешних возмущений. 2 ил.

Изобретение относится к области информационно-измерительной техники и предназначено для автоматизированного расчета параметров трехканальных систем стабилизации статически устойчивых летательных аппаратов с учетом перекрестных связей каналов. С ростом информационной и структурно-целевой сложности функционирования и проектирования систем автоматического управления, проявляющейся в их многообъектности (или многоканальности, многосвязности) и многокритериальности, существенным становится учет факторов несогласованности, конфликтности и неопределенности различного характера, который может быть осуществлен с использованием комбинированных подходов теории игр и классической теории управления. Это позволяет оптимизировать управление многообъектными многокритериальными системами (ММС), а также обеспечить межобъектную устойчивость или балансировку подсистем ММС по эффективности или потерям при решении задач управления в условиях исходной структурной несогласованности.

Из уровня техники известно устройство, формирующее сигнал управления системой стабилизации летательного аппарата (патент на изобретение № RU 2487052, опубл. 10.07.2011). Данное устройство включает в себя беспилотный летательный аппарат (БПЛА) с рулевым приводом, дифференцирующим гироскопом и датчиком линейных ускорений, а также блок формирования сигнала стабилизации и две отрицательные обратные связи. Устройство обеспечивает формирование управляющего сигнала, компенсирующего внешние ограниченные возмущения с неизвестными статистическими свойствами за счет формирования сигнала управления системой стабилизации БПЛА на основе расчета областей достижимости в плоскости путем выбора оптимального гипотетического момента времени окончания переходного процесса. Недостатком данного устройства является недостаточная достоверность расчета управляющего сигнала, компенсирующего действие внешних возмущений из-за отсутствия перекрестных связей между каналами.

Из уровня техники известна автоматизированная система распределения ресурсов (патент на полезную модель № RU 80604, опубл. 10.02.2009), состоящая из блока ввода данных, блока формирования вектора значимости, блока ранжирования и блока формирования матрицы распределения. Данная система решает статическую задачу принятия решения в многообъектных системах путем нахождения компромисса между свойствами стабильности и эффективности и распределения ресурсов по объектам системы в определенный момент времени. Недостатками данной системы являются отсутствие динамической многокритериальной оптимизации управления и отсутствие балансировки системы по эффективности.

Наиболее близким техническим решением, взятым за прототип, является автоматизированная система многокритериального выбора параметров трехканальной системы стабилизации летательного аппарата с перекрестными связями (патент на полезную модель № RU 142322, опубл. 27.06.2014), позволяющая осуществить динамическую стабилизацию во время всего полета БПЛА. Оптимизацию проводят по параметрам (статическая точность, колебательность, быстродействие и устойчивость) в двух каналах, а затем полученные оптимальные параметры используют для задания начальных приближений и диапазона параметров для проведения оптимизации трехканальной системы. Система состоит из блоков ввода данных продольного канала, бокового канала и канала крена, блоков алгоритмов адаптации каналов, блоков формирования перекрестных связей, датчиков угловых скоростей и датчиков линейных ускорений и позволяет

сформировать управляющий сигнал с помощью методов динамической многокритериальной оптимизации на основе компромисса в виде равновесно-арбитражной структуры. Недостатками данной системы являются недостаточная достоверность при исследовании устойчивости системы стабилизации из-за невозможности применения классических методов теории автоматического управления (например, частотные критерии качества) и невозможность расчета передаточных функций каналов стабилизации, необходимых для данных методов исследования.

Задачей предлагаемого изобретения является устранение перечисленных выше недостатков и создание устройства оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом, позволяющего рассчитать параметры трехканальной системы стабилизации с учетом перекрестных связей между каналами и повысить достоверность полученного результата и точность управления летательным аппаратом. Более точное вычисление оптимального управляющего сигнала позволяет компенсировать действие внешних возмущающих воздействий с учетом перекрестных связей.

Поставленная задача решается за счет того, что устройство оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом включает в себя блоки ввода данных продольного канала, бокового канала и канала крена, систему стабилизации, состоящую из продольного канала, бокового канала и канала крена, модуль расчета перекрестных связей, модуль оптимизации системы стабилизации, а также дополнительно содержит модуль формирования критериев, модуль формирования результатов и модуль хранения данных, при этом группы выходов блоков ввода данных продольного канала, бокового канала и канала крена соединены соответственно с первой, второй и третьей группой входов системы стабилизации, четвертая группа входов системы стабилизации соединена с первой группой выходов модуля оптимизации системы стабилизации, группа выходов системы стабилизации соединена с группой входов модуля расчета перекрестных связей, группа выходов модуля расчета перекрестных связей соединена с группой входов модуля формирования критериев, группа выходов модуля формирования критериев соединена с группой входов модуля оптимизации системы стабилизации, вторая группа выходов модуля оптимизации системы стабилизации соединена с группой входов модуля формирования результатов, выход модуля формирования результатов соединен с группой входов модуля хранения данных.

Сущность изобретения поясняется чертежами, на которых представлены:

на фиг. 1 - структурная схема варианта устройства оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом,

на фиг. 2 - алгоритм работы устройства оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом.

На фиг. 1 обозначены:

1 - блок ввода данных продольного канала;

2 - блок ввода данных бокового канала;

3 - блок ввода данных канала крена;

4 - система стабилизации летательного аппарата;

5 - продольный канал системы стабилизации;

6 - боковой канал системы стабилизации;

7 - канал крена системы стабилизации;

8 - модуль расчета перекрестных связей;

9 - модуль формирования критериев;

10 - модуль оптимизации системы стабилизации;

11 - модуль формирования результатов;

12 - модуль хранения данных.

Предлагаемое устройство, схема которого представлена на фиг. 1, в общем случае содержит: блоки ввода данных продольного канала 1, бокового канала 2 и канала крена 3; систему стабилизации 4, состоящую из продольного канала 5, бокового канала 6, канала крена 7, модуль расчета перекрестных связей 8, модуль формирования критериев 9, модуль оптимизации системы стабилизации 10, модуль формирования результатов 11 и модуль хранения данных 12. Группы выходов блоков ввода данных продольного канала 1, бокового канала 2 и канала крена 3 соединены соответственно с первой, второй и третьей группой входов системы стабилизации 4, четвертая группа входов системы стабилизации 4 соединена с первой группой выходов модуля оптимизации системы стабилизации 10. Группа выходов системы стабилизации 4 соединена с группой входов модуля расчета перекрестных связей 8, группа выходов модуля расчета перекрестных связей 8 соединена с группой входов модуля формирования критериев 9. Группа выходов модуля формирования критериев 9 соединена с группой входов модуля оптимизации системы стабилизации 10, вторая группа выходов модуля оптимизации системы стабилизации 10 соединена с группой входов модуля формирования результатов 11, выход модуля формирования результатов 11 соединен с группой входов модуля хранения данных 12.

Блоки ввода данных продольного канала 1, бокового канала 2 и канала крена 3 могут быть выполнены в виде клавиатуры, в виде блока ввода данных с локальных дисков или с сервера базы данных. С помощью блоков ввода данных продольного канала 1, бокового канала 2, и канала крена 3 задают начальные параметры полета: высоту пуска, начальную скорость, начальные угловые скорости, начальные углы Эйлера и заданные сигналы управления.

Объектом управления (не показан) является математическая модель динамики летательного аппарата, состоящая из контура стабилизации продольного канала 5, контура стабилизации бокового канала 6 и контура стабилизации канала крена 7. Введение перекрестных связей изменяет динамику системы стабилизации 4, в которой параметры рассчитаны независимо для каждого канала. Для получения начального значения оптимизируемых параметров в трехканальной системе стабилизации 4 применен алгоритм поиска интервалов устойчивости на основе ее непосредственного моделирования с тем или иным значением оптимизируемого параметра.

Каждый из трех каналов стабилизации - продольный 5, боковой 6 и канал крена 7 - включает в себя блок регуляторов (не показан), блок корректирующих фильтров (не показан), блок рулевых приводов (не показан), блок датчиков угловых скоростей (не показан). Блок рулевых приводов представляет собой математическую модель, с помощью которой рассчитывают необходимые отклонения эквивалентных рулей (руля высоты, руля направления и элеронов) для отработки управляющих сигналов системы стабилизации 4. Эквивалентные рули определяют отклонения физических рулей, влияющих на динамические характеристики летательного аппарата. Продольный канал 5 и боковой канал 6 дополнительно включают в себя блоки датчиков линейных ускорений (не показаны). В системе стабилизации 4 на основе начальных данных формируют параметры траектории и аэродинамические коэффициенты летательного аппарата.

В модуле оптимизации системы стабилизации 10 проводят оптимизацию системы стабилизации 4 путем корректировки параметров регуляторов. В модуле формирования результатов 11 формируют банк данных параметров регуляторов и критериев качества и размещают полученные данные в модуле хранения данных 12. Формируют алгоритмы адаптации и стабилизации.

В качестве объекта управления может быть использован реальный летательный аппарат или его математическая модель (объект управления может быть реализован в составе автоматизированного рабочего места, выполненного на базе компьютера, например, Pentium 4 512 Мб ОЗУ, 100 HDD).

Уравнение продольного движения летательного аппарата имеет вид:

где

а 11 - коэффициент, характеризующий аэродинамическое демпфирование летательного аппарата;

а 12 - коэффициент, характеризующий статическую устойчивость летательного аппарата;

а 13 - коэффициент, характеризующий эффективность рулей высоты;

а 15 - коэффициент, характеризующий отношение момента инерции продольного канала к единице;

р - комплексная переменная;

ϑ0 - угол тангажа опорной траектории, [рад];

Ψ0 - угол рыскания опорной траектории, [рад];

γ0 - угол крена опорной траектории, [рад];

Δϑ - угол тангажа, [град];

ΔΨ - угол рыскания, [град];

Δγ - угол крена, [град];

Δα - угол атаки, [град];

Δδв - угол отклонения рулей высоты, [град];

Мвозм,z - момент возмущения в продольном канале, [Н⋅м].

Уравнение бокового движения летательного аппарата:

где

b11 - коэффициент, характеризующий аэродинамическое демпфирование летательного аппарата;

b12 - коэффициент, характеризующий статическую устойчивость летательного аппарата;

b13 - коэффициент, характеризующий эффективность рулей направления;

b15 - коэффициент, характеризующий отношение момента инерции бокового канала к единице;

р - комплексная переменная;

ϑ0 - угол тангажа опорной траектории, [рад];

Ψ0 - угол рыскания опорной траектории, [рад];

γ0 - угол крена опорной траектории, [рад];

Δϑ - угол тангажа, [град];

ΔΨ - угол рыскания, [град];

Δγ - угол крена, [град];

Δβ - угол скольжения, [град];

Δδн - угол отклонения рулей направления, [град];

Мвозм,у - момент возмущения в боковом канале, [Н⋅м].

Уравнение движения по крену летательного аппарата:

где

с11 - коэффициент, характеризующий аэродинамическое демпфирование летательного аппарата;

с12 - коэффициент, характеризующий статическую устойчивость летательного аппарата;

с13 - коэффициент, характеризующий эффективность элеронов;

- коэффициент, характеризующий эффективность рулей направления;

с15 - коэффициент, характеризующий отношение момента инерции канала крена к единице;

р - комплексная переменная;

ϑ0 - угол тангажа опорной траектории, [рад];

Ψ0 - угол рыскания опорной траектории, [рад];

Δϑ - угол тангажа, [град];

ΔΨ - угол рыскания, [град];

Δγ - угол крена, [град];

Δβ - угол скольжения, [град];

Δδн - угол отклонения рулей направления, [град];

Δδэ - угол отклонения элеронов, [град];

Мвозм,х - момент возмущения в канале крена, [Н⋅м].

Рассмотрим работу устройства на примере работы варианта устройства, схема которого представлена на фиг. 1.

Алгоритм работы устройства представлен на фиг. 2.

С помощью блоков ввода данных продольного канала 1, бокового канала 2 и канала крена 3 задают угловые скорости продольного канала ωz0, бокового канала ωу0, канала крена ωх0, задают начальную высоту пуска, начальную скорость полета летательного аппарата, начальные углы Эйлера, заданные сигналы управления, задают аэродинамические коэффициенты летательного аппарата. Представляют аэродинамику летательного аппарата в виде аэродинамических коэффициентов: коэффициентов лобового сопротивления сх, коэффициентов подъемной силы су, коэффициентов боковой силы cz, коэффициентов моментов крена mx, рыскания my и тангажа mz., а также в виде приращений сил и моментов, для этого на основе модели пространственной аэродинамики производят расчет приращений сил и моментов и вращательных производных. Задают параметры перекрестных связей между каналами системы стабилизации 4 на основе параметров опорной траектории: угловой скорости продольного канала ωz0, угловой скорости бокового канала ωу0, угловой скорости канала крена ωх0, угла тангажа υ0, угла рыскания ϕ0, угла крена γ0, угла наклона траектории Θ0, угла поворота траектории Ψ0. Рассчитывают передаточные функции для трех каналов (продольного 5, бокового 6 и канала крена 7) системы стабилизации 4. В модуле расчета перекрестных связей 8 на основе параметров траектории, полученных из системы стабилизации 4, рассчитывают передаточные функции для трех каналов системы стабилизации 4 с учетом перекрестных связей между каналами. При расчете передаточных функций систему связей рассчитывают в операторной форме, при этом летательный аппарат рассматривают как абсолютно жесткое тело и не учитывают сферическую форму Земли. Трехканальная система приводится к виду, преобразованному по Лапласу, с учетом параметров опорной траектории.

В модуле формирования критериев 9 для расчета показателей качества и формирования критериев качества системы стабилизации 4 используют передаточные функции, при этом могут быть использованы классические методы расчета, применяемые для линеаризованных систем или новые перспективные методы (на основе генетических алгоритмов, теории игр и т.д.). Выбор метода зависит от поставленных целей и задач. Критериями качества могут быть - быстродействие, перерегулирование, колебательность, точность, запасы устойчивости и т.д.

В модуле оптимизации системы стабилизации 10 на основе сформированных критериев рассчитывают оптимальную структуру контура стабилизации и оптимальные коэффициенты для блоков регуляторов, входящих в структуру системы стабилизации 4. Структура системы стабилизации 4 может быть изменена для обеспечения требуемых критериев качества. После оптимизации проводят проверку системы с помощью трехканальной системы стабилизации с моделью пространственной аэродинамики. В случае несоответствия результатов требуемым критериям производят корректировку параметров перекрестных связей в соответствии с алгоритмом работы устройства, показанным на фиг. 2. Результаты оптимизации формируют в модуле формирования результатов 11 и передают в модуль хранения данных 12. Результатами могут быть коэффициенты адаптации, критерии качества, параметры перекрестных связей и т.д. Данные из модуля хранения данных 12 в дальнейшем могут быть использованы оператором для формирования алгоритмов адаптации и траекторного управления.

Модуль расчета перекрестных связей 8, модуль формирования критериев 9, модуль формирования результатов 11 и модуль хранения данных 12 могут быть реализованы на базе компьютеров, например Pentium 4 512 Мб ОЗУ, 100 HDD, связанных между собой и расположенных в конструкторском подразделении предприятия. Предлагаемое устройство может быть реализовано также на стенде полунатурного моделирования при проведении отработки систем стабилизации 4 летательных аппаратов.

Устройство оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом, включающее в себя блоки ввода данных продольного канала, бокового канала и канала крена, систему стабилизации, состоящую из продольного канала, бокового канала и канала крена, модуль расчета перекрестных связей, модуль оптимизации системы стабилизации, отличающееся тем, что устройство дополнительно содержит модуль формирования критериев, модуль формирования результатов и модуль хранения данных, при этом группы выходов блоков ввода данных продольного канала, бокового канала и канала крена соединены соответственно с первой, второй и третьей группой входов системы стабилизации, четвертая группа входов системы стабилизации соединена с первой группой выходов модуля оптимизации системы стабилизации, группа выходов системы стабилизации соединена с группой входов модуля расчета перекрестных связей, группа выходов модуля расчета перекрестных связей соединена с группой входов модуля формирования критериев, группа выходов модуля формирования критериев соединена с группой входов модуля оптимизации системы стабилизации, вторая группа выходов модуля оптимизации системы стабилизации соединена с группой входов модуля формирования результатов, выход модуля формирования результатов соединен с группой входов модуля хранения данных.
УСТРОЙСТВО ОПТИМИЗАЦИИ АЛГОРИТМОВ АДАПТАЦИИ И СТАБИЛИЗАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОПЕРАТОРНЫМ МЕТОДОМ
УСТРОЙСТВО ОПТИМИЗАЦИИ АЛГОРИТМОВ АДАПТАЦИИ И СТАБИЛИЗАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОПЕРАТОРНЫМ МЕТОДОМ
УСТРОЙСТВО ОПТИМИЗАЦИИ АЛГОРИТМОВ АДАПТАЦИИ И СТАБИЛИЗАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ОПЕРАТОРНЫМ МЕТОДОМ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 365.
20.01.2018
№218.016.196b

Полупогружная двигательно-движительная установка

Изобретение относится к области морской подводной техники, а именно к конструкциям двигательно-движительных установок (ДДУ) подводных аппаратов. Полупогружная двигательно-движительная установка (ДДУ) содержит ротор, статор, разделитель сред, корпус и движитель. Движитель соединен...
Тип: Изобретение
Номер охранного документа: 0002636246
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.1a13

Двигательно-движительная установка подводного аппарата

Изобретение относится к области морской подводной техники, а именно к конструкциям двигательно-движительных установок подводных аппаратов. Двигательно-движительная установка подводного аппарата содержит высокоскоростной электродвигатель, редуктор, узел уплотнения и движитель. В качестве...
Тип: Изобретение
Номер охранного документа: 0002636429
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.2481

Интегральный аттенюатор

Использование: для создания схем дифференциальных аттенюаторов для работы в СВЧ диапазоне. Сущность изобретения заключается в том, что интегральный аттенюатор содержит генератор дифференциального сигнала, звенья, состоящие из параллельно включенных управляемых МОП транзисторов n- и p-типа, блок...
Тип: Изобретение
Номер охранного документа: 0002642538
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e56

Криогенный гироскоп

Использование: для производства криогенных гироскопов со сферическим ротором. Сущность изобретения заключается в том, что криогенный гироскоп содержит герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему...
Тип: Изобретение
Номер охранного документа: 0002643942
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.30d7

Мобильная лаборатория для испытаний на электромагнитные воздействия

Изобретение относится к устройствам для испытаний на стойкость к воздействию электромагнитного поля. Мобильная лаборатория для испытаний на электромагнитные воздействия выполнена в форм-факторе микроавтобуса, салон которого разделен перегородкой в виде электромагнитного экрана, отделяющего...
Тип: Изобретение
Номер охранного документа: 0002644988
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3332

Система регенерации гипоксической газовоздушной среды с повышенным содержанием аргона для обитаемых герметизированных объектов

Изобретение относится к средствам обеспечения обитаемости и пожаробезопасности подводных лодок, глубоководных обитаемых аппаратов и других средств освоения мирового океана, автономных космических объектов и других герметичных обитаемых объектов. Минимизация рисков возгораний и развития пожаров...
Тип: Изобретение
Номер охранного документа: 0002645508
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.34c9

Рыбопромысловое судно ледового плавания

Изобретение относится к области судостроения и касается вопроса эксплуатации рыбопромыслового судна в тяжелых ледовых условиях. Предложено рыбопромысловое судно ледового плавания, включающее корпус с ледовыми обводами и ледовым усилением, размещенные в отсеках балластные цистерны с балластной...
Тип: Изобретение
Номер охранного документа: 0002646042
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.34cf

Способ изготовления образца сотового заполнителя для испытаний

Изобретение относится к способам изготовления образцов для испытаний и может применяться при аттестации сотовых структур в области кораблестроения, авиастроения и космической техники. Изготавливают два одинаковых блока сотового заполнителя и приклеивают их торцевыми поверхностями к...
Тип: Изобретение
Номер охранного документа: 0002646082
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.398e

Способ электромагнитных испытаний объекта и система для его реализации

Изобретение относится к электромагнитным испытаниям для оценки защищенности объекта от мощных электромагнитных воздействий. Технический результат: возможность оценки влияния электромагнитного воздействия на крупногабаритные объекты, компоненты оборудования которых расположены в экранированных...
Тип: Изобретение
Номер охранного документа: 0002647211
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3cf5

Способ подавления реверберационной помехи при измерении акустических характеристик активного противогидролокационного покрытия в ограниченной акватории

Изобретение относится к измерительной технике и может быть использовано для оценки эффективности звукопоглощающих конструкций средств акустической защиты в судостроении, например, при создании активных противогидролокационных покрытий, характеризующихся низкочастотным рабочим диапазоном....
Тип: Изобретение
Номер охранного документа: 0002647994
Дата охранного документа: 21.03.2018
Показаны записи 241-250 из 272.
25.08.2017
№217.015.c1e3

Устройство снижения аварийного давления и локализации последствий аварии в защитной оболочке при разгерметизации первого контура судовой (корабельной) атомной энергетической установки

Изобретение относится к судовой (корабельной) атомной энергетике. Устройство снижения аварийного давления и локализации последствий аварии в защитной оболочке при разгерметизации первого контура судовой (корабельной) атомной энергетической установки размещено в защитной оболочке реакторного...
Тип: Изобретение
Номер охранного документа: 0002617712
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c254

Малогабаритный высокооборотный судовой генераторный агрегат

Изобретение относится к области электротехники и может быть использовано при разработке энергетических систем судов, а также других автономных объектов, где применяются малогабаритные турбогенераторные агрегаты с высокой частотой вращения. Техническим результатом является обеспечение получения...
Тип: Изобретение
Номер охранного документа: 0002617713
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c3e1

Комбинированный двигательно-движительный комплекс судна

Изобретение относится к области судостроения и касается вопроса повышения эффективности использования водометных движителей для водоизмещающих судов. Комбинированный двигательно-движительный комплекс судна содержит корпус в виде осесимметричной судовой кольцевой насадки с размещенным в нем...
Тип: Изобретение
Номер охранного документа: 0002617310
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c979

Маневренный стенд для измерения и настройки магнитного поля объектов морской техники

Изобретение относится к устройствам, обеспечивающим снижение магнитного поля объектов морской техники, например судов. Предложен маневренный стенд для измерения и настройки магнитного поля объектов морской техники, включающий измерительные датчики магнитного поля, лазерные излучатели,...
Тип: Изобретение
Номер охранного документа: 0002619481
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.c9e8

Способ оценки погрешностей трехосного гироскопа

Изобретение относится к трехосным гироскопам средней и повышенной точности, а конкретно к способу оценки их систематических погрешностей. Технический результат заключается в повышении точностных характеристик трехосного гироскопа за счет повышения достоверности оценки систематических...
Тип: Изобретение
Номер охранного документа: 0002619443
Дата охранного документа: 15.05.2017
26.08.2017
№217.015.dead

Устройство турбогенератора трехфазных токов двух различных частот

Изобретение относится к области электротехники, в частности к электрическим синхронным турбогенераторам переменного трехфазного тока с электромагнитным возбуждением, предназначенным для генерации напряжений двух различных частот. Технический результат - снижение расчетной полной мощности...
Тип: Изобретение
Номер охранного документа: 0002624772
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.e15c

Способ измерения коэффициента отражения звукопоглощающей конструкции

Изобретение относится к измерительной технике, в частности к способам акустического качества образцов звукопоглощающих конструкций. Способ измерения коэффициента отражения звукопоглощающей конструкции включает прием зондирующего и отраженного сигналов при помощи однонаправленного приемника из...
Тип: Изобретение
Номер охранного документа: 0002625617
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e463

Микромеханический гироскоп rr-типа

Изобретение относится к микромеханическим гироскопам (ММГ) вибрационного типа. Сущность изобретения заключается в том, что в ММГ с квадратурными электродами и источниками напряжения, соединенными с ними, введены последовательно сумматор и делитель, обеспечивающие компенсацию изменений зазора, и...
Тип: Изобретение
Номер охранного документа: 0002626570
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.ebef

Способ измерения магнитных моментов объекта

Изобретение относится к области измерения магнитного момента (ММ), а именно к измерению магнитных моментов объектов путем измерения составляющих индукции магнитных полей в условиях наличия естественных и промышленных помех. Отличительная особенность способа заключается в том, что производятся...
Тип: Изобретение
Номер охранного документа: 0002628448
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ebfe

Радиопоглощающее покрытие на основе дифракционной решетки

Изобретение относится к радиотехнике, а более конкретно к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения...
Тип: Изобретение
Номер охранного документа: 0002628455
Дата охранного документа: 17.08.2017
+ добавить свой РИД