×
25.08.2017
217.015.c970

Результат интеллектуальной деятельности: Акустооптический приемник

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой манипуляцией (ФМн). Технический результат состоит в расширении диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема. Для этого акустооптический приемник содержит приемную антенну 1, преобразователь 2 частоты, смеситель 3, гетеродин 5, первый 6 и второй 12 перемножители, первый 7 и второй 13 узкополосные фильтры, первый 8, второй 14, третий 15 и четвертый 16 амплитудные детекторы, первый 9, второй 17, третий 18 и четвертый 19 ключи, усилитель 10 первой суммарной частоты, усилитель 11 второй суммарной частоты, лазер 20, коллиматор 21, первую 22, вторую 23, третью 24 и четвертую 25 ячейки Брэгга, первую 26, вторую 27, третью 28 и четвертую 29 линзы, первую 30, вторую 31, третью 32 и четвертую 33 матрицы фотодетекторов. 2 ил.

Предлагаемый приемник относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой модуляцией (ФМн).

Известны акустооптические приемники (авт. свид. СССР №№1.718.695, 1.758.883, 1.785.410, 1.799.226, 1.799.227, патенты РФ №№2.001.533, 2.007.046, 2.234.808, 2.291.575, 2.314.644, 2.325.761, 2.439.811; Дикарев В.И. Методы и технические решения приема и обработки радиосигналов. Учебник, Санкт-Петербург, 2000, с. 413-462 и др.).

Из известных устройств наиболее близким к предлагаемому является «Акустооптический приемник» (авт. свид. СССР №№1.758.883, Н04B 10/06, 1990), который и выбран в качестве прототипа.

Указанный приемник обеспечивает подавление ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам.

Но с точки зрения расширения диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина целесообразно не подавлять, а использовать дополнительные каналы приема, проведя соответствующую их маркировку.

Технической задачей изобретения является расширение диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема.

Поставленная задача решается тем, что акустооптический приемник, содержащий, в соответствии с ближайшим аналогом, лазер, на пути распространения пучка света которого последовательно установлены коллиматор и первая ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена первая линза, в фокальной плоскости которой размещена первая матрица фотодетекторов, а также последовательно включенные приемную антенну, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, последовательно подключенные к выходу приемной антенны первый перемножитель, первый узкополосный фильтр, первый амплитудный детектор и первый ключ, отличается от ближайшего аналога тем, что он снабжен усилителем первой суммарной частоты, усилителем второй суммарной частоты, вторым перемножителем, вторым узкополосным фильтром, вторым, третьим и четвертым амплитудным детекторами, вторым, третьим и четвертым ключами, второй, третьей и четвертой ячейками Брэгга, второй, третьей и четвертой линзами, второй, третьей и четвертой матрицами фотодетекторов, причем на пути распространения пучка света лазера последовательно установлены вторая, третья и четвертая ячейки Брэгга, на пути распространения дифрагированной второй, третьей и четвертой ячейками Брэгга части пучка света установлены вторая, третья и четвертая линзы соответственно, в фокальной плоскости каждой из которой размещена вторая, третья и четвертая матрица фотодетекторов соответственно, к выходу смесителя последовательно подключены усилитель первой суммарной частоты, второй амплитудный детектор и второй ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга, к выходу смесителя последовательно подключены усилитель второй суммарной частоты, третий амплитудный детектор и третий ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга, второй вход первого ключа соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга, второй вход первого перемножителя соединен с выходом усилителя промежуточной частоты, к выходу приемной антенны последовательно подключены второй перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, второй узкополосный фильтр, четвертый амплитудный детектор и четвертый ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга.

Структурная схема акустооптического приемника представлена на фиг. 1. Частотная диаграмма, иллюстрирующая преобразование сигналов по частоте, показана на фиг. 2.

Акустооптический приемник содержит последовательно включенные приемную антенну 1, смеситель 3, второй вход которого соединен с выходом гетеродина 4, усилитель 10 первой суммарной частоты, второй амплитудный детектор 14 и второй ключ 17, второй вход которого через усилитель 5 промежуточной частоты соединен с выходом смесителя 3, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга 22. К выходу смесителя 3 последовательно подключены усилитель 11 второй суммарной частоты, третий амплитудный детектор 15 и третий ключ 18, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга 23. К выходу приемной антенны 1 последовательно подключены первый перемножитель 6, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, первый узкополосный фильтр 7, первый амплитудный детектор 8 и первый ключ 9, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а вход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга 24. К выходу приемной антенны 1 последовательно подключены второй перемножитель 12, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, второй узкополосный фильтр 13, четвертый амплитудный детектор 16 и четвертый ключ 19, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга 25.

На пути распространения луча света лазера 20 последовательно установлены коллиматор 21, первая 22, вторая 23, третья 24 и четвертая 25 ячейки Брэгга. На пути распространения дифрагированного ячейкой Брэгга 22 (23, 24, 25) пучка света установлена линза 26 (27, 28, 29), в фокальной плоскости которой размещена матрица 30 (31, 32, 33) фотодетекторов.

Последовательно включенные гетеродин 4 и смеситель 3 образуют преобразователь 2 частоты.

Акустооптический приемник работает следующим образом.

Принимаемый сигнал с фазовой манипуляцией (ФМн) на частоте ωс

uc(t)=Uc⋅cos[(ωct+ϕk1(t)+ϕc], 0≤t≤Tc,

где Uc, ωс, ϕc, Tc - амплитуда, несущая частота, начальная фаза и длительность сигнала;

ϕk1(t)≈{0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t), причем ϕk1(t)=const при kτэ<t<(k+1)τэ и может изменяться скачком при t=kτэ, т.е. на границах между элементарными посылками (k=1, 2, …, N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тсс=N⋅τс),

с выхода приемной антенны 1 одновременно поступает на первые входы смесителя 3, первого 6 и второго 12 перемножителей. На второй вход смесителя 3 с выхода гетеродина 4 подается напряжение

uг(t)=Uг⋅cos[ωгt+ϕг],

где Uг, ωг, ϕг - амплитуда, частота и начальная фаза напряжения гетеродина.

Частота настройки ωн1 усилителя 5 промежуточной частоты выбрана равной промежуточной (разностной) частоте (фиг. 2)

ωн1пргс.

Частота настройки ωн2 усилителя 10 первой суммарной частоты выбрана равной первой суммарной частоте

ωн2Σ1сг.

Частота настройки ωн3 усилителя 11 второй суммарной частоте выбрана равной второй суммарной частоте

ωн3Σ2гз.

Частота настройки ωн4 первого 6 и второго 12 узкополосных фильтров выбрана равной второй гармонике частоты гетеродина 4

ωн4=2ωг.

На выходе смесителя 3 образуются напряжения комбинационных частот. Усилителями 5 и 10 выделяются напряжения промежуточной (разностной) и первой суммарной частот соответственно

uпр1(t)=Uпр1⋅cos[ωпрt-ϕk1(t)+ϕпр1],

uΣ1(t)=Uпр1⋅cos[ωΣ1t-ϕk1(t)+ϕΣ1], 0≤t≤Tc,

где

ωпргс - промежуточная (разностная) частота;

ωΣ1сг - первая суммарная частота;

ϕпр1гс; ϕΣ1сг.

Напряжение uΣ1(t) поступает на вход амплитудного детектора 14, где выделяется его огибающая, которая поступает на управляющий вход ключа 17, открывая его. В исходном состоянии ключи 9, 17, 18 и 19 всегда закрыты.

При этом напряжение uпр1(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 17 поступает на пьезоэлектрический преобразователь первой ячейки Брэгга 22, где происходит его преобразование в акустическое колебание. Каждая ячейка Брэгга 22 (23, 24, 25) состоит из звукопровода и возбуждающей гиперзвук пьезоэлектрической пластины, выполненной из кристалла ниобата лития соответственно X и Y-35° среза. Это обеспечивает автоматическую подстройку по углу Брэгга и работу ячейки в широком диапазоне частот.

Пучок света от лазера 20, сколлимированный коллиматором 21, проходит через ячейку Брэгга 22 и дифрагирует на акустических колебаниях, возбужденных напряжением uпр1(t). При этом следует отметить, что на каждой ячейке Брэгга дифрагирует только примерно десятая часть пучка света источника излучения.

На пути распространения дифрагируемой части пучка света установлена линза 26, в фокальной плоскости которой размещается матрица 30 фотодетекторов.

Следовательно, в фокальной плоскости линзы 30 формируется пространственный спектр принимаемого сигнала. Причем каждому разрешающему элементу анализируемого частотного диапазона соответствует свой фотодетектор.

Описанная выше работа акустооптического приемника соответствует случаю приема ФМн-сигналов по основному каналу на частоте ωс (фиг. 2).

Если ФМн-сигнал принимается по зеркальному каналу на частоте ωз

uз(t)=Uз⋅cos[ωзt+ϕk2(t)+ϕз], 0≤t≤Тз,

то усилителями 5 и 11 выделяются второе напряжение промежуточной частоты и напряжение второй суммарной частоты соответственно

uпр2(t)=Uпр2⋅cos[ωпрt-ϕk2(t)+ϕпр2],

uΣ2(t)=Uпр2⋅cos[ωΣ2t-ϕk2(t)+ϕΣ2], 0≤t≤Tз,

где

ωпрзг - промежуточная (разностная) частота;

ωΣ2гз - вторая суммарная частота;

ϕпрзг; ϕΣ2гз.

Напряжение uΣ2(t) поступает на вход амплитудного детектора 15, где выделяется его огибающая, которая поступает на управляющий вход ключа 18, открывая его.

При этом напряжение uпр2(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 18 поступает на пьезоэлектрический преобразователь второй ячейки Брэгга 23, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по зеркальному каналу на частоте ωз, анализируется в матрице 31 фотодетекторов.

Если ФМн-сигнал принимается по первому комбинационному каналу на частоте ωк1

uк1(t)=Uк1⋅cos[ωк1t+ϕk3(t)+ϕк1], 0≤t≤Tк1,

то усилителем 5 выделяется третье напряжение промежуточной частоты

uпр3(t)=Uпр3⋅cos[ωпрt+ϕk3(t)+ϕк3], 0≤t≤Tк1,

где

ωпр=2ωгк1 - промежуточная (разностная) частота;

ϕпр3гк1,

которое подается на второй вход первого перемножителя 6, на первый вход которого с выхода приемной антенны 1 поступает сигнал uк1(t), принимаемый по первому комбинационному каналу на частоте ωк1. На выходе перемножителя 6 образуются напряжения комбинационных частот. Первым узкополосным фильтром 7 выделяется гармоническое напряжение на второй гармонике частоты 2ωг гетеродина 4

u1(t)=U1⋅cos[2ωгt+ϕг], 0≤t≤Tк1,

где которое поступает на вход первого амплитудного детектора 8, где выделяется его огибающая, которая поступает на управляющий вход первого ключа 9, открывая его.

При этом напряжение uпр(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 9 поступает на пьезоэлектрический преобразователь третьей ячейки Брэгга 24, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по первому комбинационному каналу на частоте ωк1, анализируется в матрице 32 фотодетекторов.

Если ФМн-сигнал принимается по второму комбинационному каналу на частоте ωк2

uк2(t)=Uк2⋅cos[ωк2t+ϕk4(t)+ϕк2], 0≤t≤Tк2,

то усилителем 5 промежуточной частоты выделяется четвертое напряжение промежуточной частоты

uпр4(t)=Uпр4⋅cos[ωпрt+ϕk4(t)+ϕк4], 0≤t≤Tк2,

где

ωпрк2-2ωг - промежуточная (разностная) частота;

ϕпр4к2г,

которое подается на второй вход второго перемножителя 12, на первый вход которого с выхода приемной антенны 1 поступает сигнал, принимаемый по второму комбинационному каналу на частоте ωк2. На выходе перемножителя 12 образуются напряжения комбинационных частот. Вторым узкополосным фильтром 13 выделяется гармоническое напряжение на второй гармонике частоты 2ωг гетеродина 4

u2(t)=U2⋅соs[2ωгt+ϕг], 0≤t≤Tк2,

где которое поступает на вход четвертого амплитудного детектора 16, где выделяется его огибающая, которая поступает на управляющий вход четвертого ключа 19, открывая его.

При этом напряжение uпр4(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 19 поступает на пьезоэлектрический преобразователь четвертой ячейки Брэгга 33, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по второму комбинационному каналу на частоте ωк2, анализируется в матрице 33 фотодетекторов.

Таким образом, предлагаемый акустооптический приемник по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивают расширение диапазона рабочих частот в четыре раза. Это достигается использованием дополнительных каналов приема: зеркального, первого и второго комбинационных.

Акустооптический приемник, содержащий лазер, на пути распространения пучка света которого последовательно установлены коллиматор и первая ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена первая линза, в фокальной плоскости которой размещена первая матрица фотодетекторов, а также последовательно включенные приемную антенну, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, последовательно подключенные к выходу приемной антенны первый перемножитель, первый узкополосный фильтр, первый амплитудный детектор и первый ключ, отличающийся тем, что он снабжен усилителем первой суммарной частоты, усилителем второй суммарной частоты, вторым перемножителем, вторым узкополосным фильтром, вторым, третьим и четвертым амплитудными детекторами, вторым, третьим и четвертым ключами, второй, третьей и четвертой ячейками Брэгга, второй, третьей и четвертой линзами, второй, третьей и четвертой матрицами фотодетекторов, причем на пути распространения пучка света последовательно установлены вторая, третья и четвертая ячейки Брэгга, на пути распространения дифрагированной второй, третьей и четвертой ячейками Брэгга части пучка света установлены вторая, третья и четвертая линза соответственно, в фокальной плоскости каждой из которой размещена вторая, третья и четвертая матрица фотодетекторов соответственно, к выходу смесителя последовательно подключены усилитель первой суммарной частоты, второй амплитудный детектор и второй ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга, к выходу смесителя последовательно подключены усилитель второй суммарной частоты, третий амплитудный детектор и третий ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга, второй вход первого ключа соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга, второй вход первого перемножителя соединен с выходом усилителя промежуточной частоты, к выходу приемной антенны последовательно подключены второй перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, второй узкополосный фильтр, четвертый амплитудный детектор и четвертый ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга.
Акустооптический приемник
Акустооптический приемник
Источник поступления информации: Роспатент

Показаны записи 151-160 из 761.
10.06.2015
№216.013.542b

Способ передачи информации с использованием помехоустойчивого кодирования

Изобретение относится к области кодирования и передачи данных и может быть использовано в автоматизированных системах подготовки и пуска ракет космического назначения. Техническим результатом является повышение достоверности передачи сообщений в каналах связи. Способ содержит этапы, на которых...
Тип: Изобретение
Номер охранного документа: 0002553068
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.555c

Способ извлечения новокаина из водного раствора

Изобретение относится к аналитической химии и фармацевтике и может быть использовано при анализе остаточного содержания новокаина в водных средах. Способ извлечения новокаина из водных растворов включает приготовление водно-солевого раствора новокаина путем его растворения в насыщенном растворе...
Тип: Изобретение
Номер охранного документа: 0002553373
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.557b

Устройство для удаления воздуха из рабочей жидкости закрытых гидравлических систем воздушных судов

Изобретение относится к области авиации, в частности к устройствам для удаления воздуха из рабочих жидкостей закрытых гидравлических систем воздушных судов. Устройство для удаления воздуха из рабочей жидкости закрытых гидравлических систем воздушных судов содержит гидронасос с автономным...
Тип: Изобретение
Номер охранного документа: 0002553404
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.557e

Адаптивный способ защиты объекта от управляемой по лазерному лучу ракеты

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты. Определяют координаты источника этого излучения. Производят ориентацию помехового лазера по этим координатам. Обнаруживают лазерные сигналы...
Тип: Изобретение
Номер охранного документа: 0002553407
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.59ce

Устройство формирования сигналов квадратурной амплитудной модуляции

Изобретение относится к радиотехнике и может быть использовано в устройствах многоканальной цифровой связи с квадратурной амплитудной манипуляцией, а также в области цифрового радиовещания и цифрового телевидения. Достигаемый технический результат - снижение потерь пропускной способности...
Тип: Изобретение
Номер охранного документа: 0002554531
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b4c

Устройство отделения и раскрытия створок батареи солнечной космического аппарата

Изобретение относится к космической технике и может быть использовано в раскрывающихся солнечных батареях космических аппаратов. Устройство отделения и раскрытия створок солнечной батареи (УОРССБ) космического аппарата содержит раму, два пакета створок, прижимные замки с крюками, качалки,...
Тип: Изобретение
Номер охранного документа: 0002554913
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5d95

Индикатор-сигнализатор волн цунами в открытом океане

Изобретение относится к плавучим средствам и может быть использовано для обнаружения волн цунами в открытом океане. Сущность: устройство содержит платформу (1) с установленным на ней буем (11). Платформу (1) наделяют функцией плавучести и возможностью удерживать заданный подводный...
Тип: Изобретение
Номер охранного документа: 0002555498
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5de6

Способ обеспечения живучести плавающей машины в условиях низких температур

Изобретение относится к способам обеспечения живучести плавающих машин. Способ включает установку снаружи машины кожухов, соединенных с ее корпусом с возможностью образования открытых снизу полостей с возможностью регулирование подачи в них выхлопных газов силовой установки. При прямолинейном...
Тип: Изобретение
Номер охранного документа: 0002555579
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e0e

Способ пожаротушения

Изобретение относится к способам пожаротушения с применением наземной пожарной бронированной машины и вертолета. Предложенный способ заключается в том, что в экстремальных условиях и при отсутствии возможности пополнения водяного бака бронированной машины доставляют огнегасящую жидкость из...
Тип: Изобретение
Номер охранного документа: 0002555619
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5fa3

Способ комбинированного сглаживания координат подвижной цели

Изобретение относится к радиоэлектронике и касается принципов построения системы обработки гидроакустической или радиолокационной информации в части автоматического сопровождения подвижной цели. Достижимым техническим результатом изобретения является снижение ошибок сопровождения при малом...
Тип: Изобретение
Номер охранного документа: 0002556024
Дата охранного документа: 10.07.2015
Показаны записи 151-160 из 535.
10.07.2015
№216.013.5de6

Способ обеспечения живучести плавающей машины в условиях низких температур

Изобретение относится к способам обеспечения живучести плавающих машин. Способ включает установку снаружи машины кожухов, соединенных с ее корпусом с возможностью образования открытых снизу полостей с возможностью регулирование подачи в них выхлопных газов силовой установки. При прямолинейном...
Тип: Изобретение
Номер охранного документа: 0002555579
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e0e

Способ пожаротушения

Изобретение относится к способам пожаротушения с применением наземной пожарной бронированной машины и вертолета. Предложенный способ заключается в том, что в экстремальных условиях и при отсутствии возможности пополнения водяного бака бронированной машины доставляют огнегасящую жидкость из...
Тип: Изобретение
Номер охранного документа: 0002555619
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5fa3

Способ комбинированного сглаживания координат подвижной цели

Изобретение относится к радиоэлектронике и касается принципов построения системы обработки гидроакустической или радиолокационной информации в части автоматического сопровождения подвижной цели. Достижимым техническим результатом изобретения является снижение ошибок сопровождения при малом...
Тип: Изобретение
Номер охранного документа: 0002556024
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5fb4

Способ управления подъемом двухкорпусного плавучего объекта и устройство для его осуществления

Группа изобретений относится к области судостроения, а именно к спускоподъемным устройствам. Способ управления подъемом двухкорпусного плавучего объекта выполняют при помощи спускоподъемного устройства, адекватного массе объекта без воды в легком корпусе, для чего грузовые лебедки включают на...
Тип: Изобретение
Номер охранного документа: 0002556041
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6012

Способ управления подъемом двухкорпусного плавучего объекта и устройство для его осуществления

Изобретение относится к области судостроения, а именно к судовым спуско-подъемным устройствам (СПУ). Предложен способ управления подъемом двухкорпусного плавучего объекта, сущность которого заключается в том, что подъем двухкорпусного объекта выполняют усилием СПУ, адекватным массе объекта без...
Тип: Изобретение
Номер охранного документа: 0002556135
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6013

Устройство автоматического выравнивания грузоподъемных механизмов

Изобретение относится к устройствам для выравнивания грузоподъемных механизмов. Устройство автоматического выравнивания грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы, датчик контакта штоков...
Тип: Изобретение
Номер охранного документа: 0002556136
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6239

Способ получения авиационного бензина б95/130

Изобретение описывает способ получения авиационного бензина Б-95/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, при этом в качестве основы используется фракция,...
Тип: Изобретение
Номер охранного документа: 0002556692
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.63c9

Устройство обеспечения теплового режима и чистоты космической головной части ракеты космического назначения с крупногабаритной полезной нагрузкой

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке и старте ракеты космического назначения. Устройство обеспечения теплового режима и чистоты космической головной части ракеты космического назначения с крупногабаритной полезной нагрузкой содержит на...
Тип: Изобретение
Номер охранного документа: 0002557092
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64c5

Способ наблюдения за местностью механиком-водителем военной гусеничной машины

Изобретение относится к области военной техники, в частности к способам повышения эффективности наблюдения за местностью при вождении бронетанкового вооружения, а также распознавании целей. Способ наблюдения за местностью механиком-водителем военной гусеничной машины заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002557344
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64c9

Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов содержит...
Тип: Изобретение
Номер охранного документа: 0002557348
Дата охранного документа: 20.07.2015
+ добавить свой РИД