×
25.08.2017
217.015.c809

Результат интеллектуальной деятельности: Способ определения дальности до отражающей поверхности

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиолокационной техники и может быть применено при построении высотомеров малых высот летательных аппаратов, использующих в качестве зондирующих сигналов сверхкороткие импульсы. Достигаемый технический результат - повышение быстродействия, разрешающей способности и экономичности способа определения дальности до отражающей поверхности с использованием сверхкоротких импульсов. Сущность способа заключается в излучении в направлении отражающей поверхности радиоволн в виде сверхкоротких импульсов и последующем приеме отраженных радиоволн в виде импульсов, небольшую часть излучаемых сверхкоротких импульсов и отраженные импульсы квантуют по амплитуде, укорачивают по длительности, далее используют широкополосную дисперсионную задержку квантованных по амплитуде и укороченных по длительности излучаемых и отраженных импульсов, с помощью которой преобразуют каждый из них в линейно-частотно-модулированные сигналы равной длительности, и по сигналу биений разностной частоты этих линейно-частотно-модулированных сигналов определяют дальность до отражающей поверхности, при этом длительность линейно-частотно-модулированных сигналов превышает максимальную задержку отраженного сигнала. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области радиолокационной техники и может быть применено при построении высотомеров малых высот летательных аппаратов, использующих в качестве зондирующих сигналов сверхкороткие импульсы.

Известен способ определения дальности до отражающей поверхности с использованием сверхкоротких импульсов, построенный на основе MIR-технологии, выбранный за аналог [1].

Способ определения дальности с использованием MIR-технологии осуществляется следующим способом.

В направлении отражающей поверхности излучают и принимают отраженные от нее последовательности сверхкоротких импульсов (соответственно поз. 1 и поз. 2 на фиг. 1). После излучения каждого импульса формируется узкое временное окно (поз. 3 на фиг. 1), временная задержка которого от импульса к импульсу изменяется по линейному закону. При совпадении по времени отраженного импульса (поз. 2 на фиг. 1) с временным окном (поз. 4 на фиг. 1) он регистрируется, и по временному положению этого окна определяется дальность до отражающей поверхности. Таким образом, измерение дальности до отражающей поверхности осуществляется за большое количество излучаемых сверхкоротких импульсов стробоскопическим методом.

Недостатками способа [1] являются:

- низкое быстродействие, обусловленное применением стробоскопического метода определения задержки отраженного сигнала относительно зондирующего сверхкороткого импульса;

- высокие энергозатраты на получение одного отсчета дальности до отражающей поверхности.

Известен способ определения дальности до отражающей поверхности с использованием сверхкоротких импульсов на основе ТМ-технологии [2], частично устраняющий недостатки аналога [1], выбранный за прототип.

Способ определения дальности с использованием ТМ-технологии осуществляется следующим способом.

В направлении отражающей поверхности излучают и принимают отраженные от нее последовательности сверхкоротких импульсов (соответственно поз. 1 и поз. 2 на фиг. 2). Отраженные импульсы обрабатывают многоканальным корреляционным способом с использованием опорных импульсов, сдвинутых по задержке в каждом канале относительно излучаемого импульса (поз. 5-поз. 8 на фиг. 2). При совпадении по времени отраженного импульса (поз. 2 на фиг. 2) с опорным импульсом (поз. 7 на фиг. 2) он регистрируется в N-м канале, номер которого определяет дальность до отражающей поверхности. Таким образом, измерение дальности до отражающей поверхности может осуществляться за один излучаемый импульс. Разрешающая способность способа [2] определяется количеством дальномерных каналов и при больших диапазонах дальностей до отражающей поверхности не может быть высокой.

Недостатками способа [2] являются:

- низкая разрешающая способность при больших диапазонах дальностей, обусловленная сложностью формирования большого количества дальномерных каналов;

- низкая экономичность, обусловленная применением многоканальной корреляционной обработки.

Техническим результатом предлагаемого изобретения являются повышение быстродействия, разрешающей способности и экономичности способа определения дальности до отражающей поверхности с использованием сверхкоротких импульсов.

Технический результат достигается тем, что в способе определения дальности до отражающей поверхности, заключающемся в излучении в направлении отражающей поверхности радиоволн в виде сверхкоротких импульсов и последующем приеме отраженных радиоволн в виде импульсов, небольшую часть излучаемых сверхкоротких импульсов и отраженные импульсы квантуют по амплитуде, укорачивают по длительности, далее используют широкополосную дисперсионную задержку квантованных по амплитуде и укороченных по длительности излучаемых и отраженных импульсов, с помощью которой преобразуют каждый из них в линейно-частотно-модулированные сигналы равной длительности, и по сигналу биений разностной частоты этих линейно-частотно-модулированных сигналов определяют дальность до отражающей поверхности, при этом длительность линейно-частотно-модулированных сигналов превышает максимальную задержку отраженного сигнала.

Технический результат достигается тем, что для обеспечения скрытности период следования излучаемых сверхкоротких импульсов изменяют по случайному закону, при этом максимальная задержка отраженного сигнала не превышает минимального периода следования излучаемых сверхкоротких импульсов.

Способ определения дальности до отражающей поверхности поясняют следующие чертежи.

Фиг. 1 поясняет способ определения дальности до отражающей поверхности на основе MIR-технологии [1], выбранный за аналог. На ней показаны эпюры напряжения следующих сигналов: 1 - излучаемый сверхкороткий импульс; 2 - отраженный импульс; 3 - строб-импульс; 4 - строб-импульс, накрывающий отраженный импульс.

Фиг. 2 поясняет способ определения дальности до отражающей поверхности на основе ТМ-технологии [2], выбранный за прототип. На ней показаны эпюры напряжения следующих сигналов: 1 - излучаемый сверхкороткий импульс; 2 - отраженный импульс; 5 - опорный импульс в 1-м канале дальности; 6 - опорный импульс в 2-м канале дальности; 7 - опорный импульс в N-м канале дальности, в котором находится отраженный сигнал; 8 - опорный импульс в N+1-м канале дальности.

Фиг. 3 поясняет предлагаемый способ определения дальности до отражающей поверхности. На ней показаны эпюры напряжения следующих сигналов: 1 - излучаемый сверхкороткий импульс; 9 - квантованный укороченный излучаемый импульс; 10 - линейно-частотно-модулированный сигнал (ЛЧМ-сигнал), соответствующий излучаемому импульсу; 2 - отраженный импульс; 11 - квантованный укороченный отраженный импульс; 12 - ЛЧМ-сигнал, соответствующий отраженному импульсу; 13 - сигнал биений разностной частоты.

Предлагаемый способ определения дальности до отражающей поверхности осуществляется следующим способом.

В направлении отражающей поверхности излучают сверхкороткий импульс (поз. 1 на фиг. 3). Небольшая часть излучаемого импульса квантуется по амплитуде и укорачивается по длительности (поз. 9 на фиг. 3). Полученный короткий квантованный импульс с широким спектром преобразуется в линейно-частотно-модулированный сигнал (ЛЧМ-сигнал) (поз. 10 на фиг. 3) при помощи широкополосной дисперсионной задержки, описываемой аналитической зависимостью вида [3]

где

- зависимость времени задержки от частоты;

b и μ - постоянные величины;

;

;

, - нижняя и верхняя границы изменения частоты в ЛЧМ-сигнале.

Отраженный импульс (поз. 2 на фиг. 3) квантуется по амплитуде и укорачивается по длительности (поз. 11 на фиг. 3). Полученный короткий импульс широкополосной дисперсионной задержкой вида (1) преобразуется в ЛЧМ-сигнал (поз. 12 на фиг. 3). При этом для ЛЧМ-сигналов, соответствующих излученному и отраженному импульсам, границы диапазона изменения частоты , , полная девиация и их длительности τ совпадают.

ЛЧМ-сигналы, соответствующие излученному и отраженному импульсам, преобразуются в сигнал биений разностной частоты (поз. 13 на фиг. 3).

Далее по разностной частоте , равной

где - текущая частота ЛЧМ-сигнала, соответствующая излучаемому импульсу, - текущая частота ЛЧМ-сигнала, соответствующая отраженному импульсу,

дальность до отражающей поверхности R определяется с помощью соотношения [4]

где c - скорость света, τ - длительность ЛЧМ-сигнала, ΔF - полная девиация.

Для обеспечения скрытности период повторения излучаемых сверхкоротких импульсов изменяют по случайному закону (рандомизируют), при этом максимальная задержка отраженного сигнала не превышает минимального периода следования излучаемых сверхкоротких импульсов.

В результате предлагаемый способ позволяет определять дальность до отражающей поверхности по одному сверхкороткому импульсу излучения с применением одноканальной обработки отраженного сигнала, при этом процесс преобразования излучаемых и отраженных радиоволн, предварительно квантованных по амплитуде и укороченных по длительности, в информативный сигнал в виде сигнала биений разностной частоты проводить без энергозатрат. Излучение и прием импульсов с преобразованием их при обработке в ЛЧМ-сигналы с последующим определением по разностной частоте этих ЛЧМ-сигналов дальности до отражающей поверхности позволяют, по сравнению с прототипом:

- повысить разрешающую способность при широком диапазоне дальностей за счет определения дальности по разностной частоте ЛЧМ-сигналов, соответствующих излучаемому и отраженному сигналам;

- снизить энергетические затраты на получение одного отсчета дальности за счет применения одноканального способа обработки отраженного сигнала.

Таким образом, способ определения дальности обладает существенными преимуществами перед прототипом и аналогом.

Литература

1. Радзиевский В.Г., Трифонов П.А. Обработка сверхширокополосных сигналов и помех. - М.: Радиотехника, 2009, С. 14-18.

2. Щербак Н. Сверхширокополосная радиолокация // Электроника: Наука, Технология, Бизнес, 3/2002, С. 44.

3. Радиоприемные устройства / Под ред. А.П. Жуковского. - М.: Высш. шк., 1989, С. 247.

4. Справочник по радиолокации / Под ред. М. Сколника, том 3, С. 26.


Способ определения дальности до отражающей поверхности
Способ определения дальности до отражающей поверхности
Способ определения дальности до отражающей поверхности
Источник поступления информации: Роспатент

Показаны записи 541-550 из 582.
27.12.2019
№219.017.f34e

Устройство для локализации аварии в вакуумной камере термоядерного реактора

Изобретение относится к термоядерной технике, а именно к конструкции вакуумной камеры (ВК) и системы локализации аварии (СЛА) в термоядерном реакторе ТЯР или в демонстрационном термоядерном источнике нейтронов (ДЕМО-ТИН). Возможно ее использование в любых установках, где существует возможность...
Тип: Изобретение
Номер охранного документа: 0002710183
Дата охранного документа: 24.12.2019
17.01.2020
№220.017.f654

Устройство предохранения и коммутации взрывателя

Изобретение относится к военной технике, а именно к устройствам предохранения и коммутации взрывателя ракетных, авиационных и зенитных боеприпасов, работающих в условиях интенсивных электромагнитных полей и других экстремальных воздействий. Устройство включает в себя электрический соединитель...
Тип: Изобретение
Номер охранного документа: 0002711149
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6c7

Устройство для отвода тепла от радиоэлементов

Изобретение относится к электронным приборам, устанавливаемым во внешние электронные устройства в качестве самостоятельных блоков. Технический результат – отвод тепла от тепловыделяющих элементов, расположенных на печатных платах внутри корпуса и не имеющих непосредственного контакта с самим...
Тип: Изобретение
Номер охранного документа: 0002711122
Дата охранного документа: 15.01.2020
06.02.2020
№220.017.ff1c

Устройство для герметизации разъемного соединения кабелей

Изобретение относится к электротехнике и может быть использовано в устройствах для герметизации разъемного соединения кабелей, работающих в агрессивной среде, например для передачи электрического сигнала или в системах контроля параметров ядерного реактора на быстрых нейтронах с тяжелым...
Тип: Изобретение
Номер охранного документа: 0002713509
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff5e

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

Изобретение относится к устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство включает опору, содержащую гибкие стержневые элементы, расположенные в виде пучка между двумя фланцами в центральной части фланцев. Одним фланцем опора соединена с модулем...
Тип: Изобретение
Номер охранного документа: 0002713216
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff84

Ядерный реактор на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем

Изобретение относится к ядерному реактору на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем. Реактор содержит активную зону, расположенную в полости центральной части корпуса ядерного реактора, и размещенные в полости периферийной части корпуса по меньшей мере один главный...
Тип: Изобретение
Номер охранного документа: 0002713222
Дата охранного документа: 04.02.2020
20.02.2020
№220.018.0449

Способ радиолокации с изменением несущей частоты от импульса к импульсу

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по...
Тип: Изобретение
Номер охранного документа: 0002714510
Дата охранного документа: 18.02.2020
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
06.03.2020
№220.018.0997

Фазовращатель

Изобретение относится к области радиотехники, в частности к фазовращателям СВЧ-сигнала, и может быть использовано в качестве функционального узла в приемо-передающих трактах радиотехнических систем и базового элемента при создании коммутирующих устройств СВЧ. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002715910
Дата охранного документа: 04.03.2020
09.03.2020
№220.018.0ab4

Коллиматор нейтронов

Заявленное изобретение относится к коллиматору нейтронов. Устройство включает металлический четырехгранный прямоугольный корпус (2), в котором закреплены четыре секции (10) решетки (9), выполненные из тугоплавкого металла. Каждая секция (10) решетки (9) выполнена в форме прямой правильной...
Тип: Изобретение
Номер охранного документа: 0002716142
Дата охранного документа: 06.03.2020
Показаны записи 421-425 из 425.
29.11.2019
№219.017.e743

Способ навигации летательных аппаратов и устройство для его осуществления

Изобретение относится к области радиолокационной техники (РРС). Технический результат - повышение быстродействия РРС, а также точности определения местоположения летательного аппарата (ЛА) при движении с повышенными скоростями и увеличении диапазона высот при полете. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002707269
Дата охранного документа: 26.11.2019
20.02.2020
№220.018.0449

Способ радиолокации с изменением несущей частоты от импульса к импульсу

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по...
Тип: Изобретение
Номер охранного документа: 0002714510
Дата охранного документа: 18.02.2020
29.02.2020
№220.018.0783

Приемопередатчик бортового ретранслятора

Изобретение относится к области радиотехники и может быть использовано для передачи и приема сигналов в системах спутниковой связи. Технический результат - обеспечение регулировки и автономного контроля работоспособности приемопередающей системы. Приемопередатчик включает приемник, передатчик,...
Тип: Изобретение
Номер охранного документа: 0002715376
Дата охранного документа: 27.02.2020
09.03.2020
№220.018.0ad2

Способ формирования фазоманипулированного сигнала системы телеметрии и устройство для его осуществления

Изобретение относится к области радиотехники и может найти применение в системах телеметрии. Технический результат: снижение внеполосных спектральных составляющих в излучаемом фазоманипулированном сигнале (ФМ-сигнале), простота практической реализации. В способе формирования ФМ-сигнала...
Тип: Изобретение
Номер охранного документа: 0002716147
Дата охранного документа: 06.03.2020
21.03.2020
№220.018.0e73

Система встроенного контроля бортового ретранслятора

Изобретение относится к радиотехнике и предназначено для контроля ретранслятора, в частности ретранслятора фазоманипулированных сигналов, использующих приемопередатчики с приемниками прямого преобразования частоты, которые расположены на борту летательного аппарата. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002717092
Дата охранного документа: 18.03.2020
+ добавить свой РИД